Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимические реакции амидов

    Фотохимические реакции, обзоры аллильные соединения [984] альдегиды [1026] амиды [985] [c.124]

    Фотохимические данные, полученные для соединений, содержащих карбонильную группу С = 0, обширнее, чем любого другого класса органических соединений. Для краткости мы в основном ограничимся рассмотрением фотохимии альдегидов и кетонов, так как для карбоновых кислот, ангидридов кислот, сложных эфиров и даже амидов имеют место аналогичные реакции фотодиссоциации. [c.66]


    В целом же нефть и нефтепродукты, попавшие в водную среду, подвергаются многочисленным процессам, направленным на ее разрушение. Наиболее значимые из них - химические и биохимические процессы, в основе которых лежат окислительно-восстановительные, фотохимические и гидролитические реакции. Процессу гидролиза подвергаются соединения, являющиеся слабыми кислотами или основаниями, эфиры, амиды различных карбоновых и фосфорсодержащих кислот. [c.43]

    Биохимический процесс, который протекает в растениях и не имеет места в организме млекопитающих, — это фотохимическое выделение кислорода из воды, которое является одной из стадий процесса фотосинтеза. Известно много соединений, ингибирующих эту реакцию, причем, как правило, они малотоксичны для теплокровных. Все гербициды, действие которых, по-видимому, обусловлено преимущественно рассматриваемым механизмом, можно разделить на три основные группы амиды, производные мочевины и триазины (известны также гербициды, относящиеся к другим группам). [c.500]

    Для синтеза сложных эфиров и амидов существует три методологических подхода прямая катализируемая кислот.ой реакция спирта с кислотой, предварительное превращение кислоты в реакционноспособное производное и активация спирта или амина по отношению к нуклеофильной атаке карбоксильных ионов. Тетраэдрический интермедиат (32), возникающий при первых двух подходах, интенсивно изучался 199]. Другие менее общие методы синтеза сложных эфиров, такие как реакция Байера — Виллигера или фотохимическое окисление кетонов, рассмотрены в разд. 9.1.1.1. Кетены [200] редко применяют для получения монофункциональных амидов или сложных эфиров. [c.47]

    В последнее время удалось осуществить присоединение форм-амидов к олефинам, проводя реакцию фотохимически в присутствии триплетного генератора [120]  [c.618]

    О реакциях фотохимической перегруппировки ароматических и виниловых сложных эфиров и амидов карбоновых кислот см. в обзоре [757].— Прим. ред. [c.346]

    Вполне разумно предполагать, что во многих случаях в результате фотолиза образуются те же самые продукты, что и при метаболизме растениями и микроорганизмами. Гидролиз эфиров и амидов, окислительное деалкилирование аминов и амидов, а также восстановление хинонов — это лишь немногие примеры реакций, которые протекают, с одной стороны, вследствие фотохимического инициирования, если соединение имеет подходящий УФ-спектр поглощения или если присутствуют сенсибилизаторы, и, с другой стороны, за счет затраты химической энергии живых систем, поступающей в результате ферментной атаки, и приводят к образованию идентичных метаболитов . Следует также отметить, что гидролиз, окисление или восстановление могут в определенных условиях происходить и без какого бы то ни было участия света или метаболических процессов. Следовательно, очень трудно убедительно доказать, что тот или иной продукт метаболизма растений не образуется в полевых условиях в результате протекания совсем других процессов. [c.353]


    В синтезе Арндта — Эйстерта ацилгалогенид превращается в карбоновую кислоту с одним дополнительным атомом углерода [156]. Первая стадия этого процесса — реакция 10-115 (т. 2). Перегруппировка происходит на второй стадии при действии на диазокетон воды и оксида серебра или бензоата серебра и триэтиламина. Эта перегруппировка носит название перегруппировки Вольфа. Данная реакция является лучщим методом увеличения длины углеродной цепи на один атом, если доступна карбоновая кислота [реакция 10-103 (т. 2) и 16-35 (т. 3) начинаются с алкилгалогенида]. Если вместо воды используется Н ОН, сразу выделяется эфир КСНгСООК. Аналогичным образом аммиак дает амид. Иногда используются другие катализаторы, например коллоидная платина, медь и т. д. Изредка диазокетон просто нагревают или подвергают фотолизу в присутствии воды, спирта или аммиака без какого-либо катализатора. Часто фотохимический метод [157] дает лучшие результаты, чем каталитический с использованием серебра. Естественно, полученные другим способом диазокетоны также способны к перегруппировке [158] Реакция весьма универсальна. Группы К могут быть алкилами или арилами они могут содержать различные функциональные группы, включая ненасыщенные, но исключая группы, кислые настолько, чтобы реагировать с СНгНг или диазокетонами (например, т. 2, реакции 10-6 и 10-28). Иногда реакцию проводят с другими диазоалка- [c.146]

    Открытие того, что Свободные радикалы типа - ONHa или H2 ONH2 могут генерироваться фотохимически или из источников свободных радикалов, привело к некоторым интересным синтезам амидов. Эти свободные радикалы присоединяются в основном к олефинам, но могут принимать участие в реакциях замещения в ароматических углеводородах. Если в качестве катализатора применяют перекись mpem-бутила, то реакция осложняется появлением более чем одного свободного радикала [1] [c.428]

    Циклизации, имеющим аналогию в синтезе лактамов (см. разд. 9.9.1.7), является взаимодействие р,7-ненасыщенных амидов с оксидом углерода в присутствии октакарбонила кобальта [45], которое с хорошим выходом приводит к имидам схема (103) . Известно также несколько реакций окисления, в результате которых образуются имиды [7, 8]. Например, фотохимическое окисление пиррольного кольца приводит к соединению (55), которое при -взаимодействии с диоксидом марганца дает имид [146] схема (104) , Лактамы могут быть окислены аналогичным образом [147], например как в случае окисления капролактама (схема (105) или под действием персульфата калия [103]. Автоокисление ацикли- [c.424]

    Азотистая и азотная кислоты соединяются с соответствующими слабыми основаниями, образуя сильные электрофильные реагенты, которые можно рассматривать как переносчики ионов нитрозония N0+ и нитрония NO2 соответственно. Многие из этих реагентов взаимодействуют с первичными и вторичными амидами, но, как правило, не реагируют с третичными амидами. В связи с низкой нуклеофильностью амидов все эти реакции протекают значительно труднее, чем в случае аминов. Как при нитрозировании, так и при нитровании, получаются аналогичные продукты первичные амиды подвергаются дезаминированию до карбоновых кислот [схемы (153) и (154)], вторичные амиды дают соответствующие N-нитрозо- или N-нитропроизводные схемы (155) и (156) . N-Алкил- и К-арил-Ы-нитрозоамиды — высоко активные соединения, которые подвержены как термическому, так и фотохимическому распаду (см. разд. 9.9.3.11 и 9.9.3.12). [c.473]

    Значительное внимание уделено также автоокислению амидов, так как этот процесс является нежелательным при производстве найлона. Такое окисление безусловно является свободнорадикаль-ным процессом и может быть индуцировано либо термически. (> 100°С), либо фотохимическим путем при низких температурах как в присутствии, так и без соответствующих инициаторов [314]. Известно три основных направления этой реакции, причем начальные стадии являются общими для всех направлений и включают схема (177) отрыв а-водородного атома по отношению к азоту с последующим присоединением кислорода с образованием перок-си-радикала (116). Дальнейший распад этого радикала протекает по трем направлениям (а) отщепление ОН с образованием имида (б) разрыв связи С—С, приводящий к имиду, и (в) расщепление связи С—N с образованием первичного амида и карбонильного соединения. Подробнее этот процесс обсуждается в [c.483]

    Амиды и их N-замещенные производные поглощают в УФ-области спектра (<250 нм), что способствует протеканию целого ряда фотохимических превращений. Эти превращения, за исключением -реакций N-нитрозопроизводных амидов, рассмотрены в обзорах [107, 332]. Для того чтобы объяснить образование наблюдаемых продуктов для простых N-алкиламидов, предложено три типа гомолитического разрыва связи схема (191) . Доказательства расщепления связи С(0)- С [стадия (а)] получены на основании обнаружения методом ЭПР радикалов 0NH2 при низкотемпературном фотолизе первичных формамидов и ацетамидов [107]. Другие направления [(б) и (в) на схеме] включают отрыв атома водорода от углеродных атомов, соседних с карбонильной и с аминогруппами. Больщинство последующих реакций этих радикалов типичны для алкильных радикалов, за исключением превращений, которым подвергается радикал (119). Этот радикал, вероятно, элиминирует СО, давая аминорадикал, который превращается в продукты, типичные для таких частиц. Именно таким образом объясняют образование аминов, насыщенных и ненасыщенных углеводородов, Hj и СО при фотолизе алифатических амидов в диоксане или гексане [333]. Радикалы типа (120) уже упоминались в связи с автоокислением амидов ср. схему (177) , в то время как радикалы типа (121) встреча- [c.490]


    Пиролиз аммиака. Хотя большое число исследований было проведено с целью изучения механизма разложения газообразного аммиака с помощью термических методов, однако до появления работы Ховарда и Брауна [58] не было отмечено образования даже следов гидразина. Эги авторы получили гидразин при разложении жидкого аммиака на раскаленных металлических нитях. Добавление к жидкому аммиаку таких веществ, как хлористый аммоний, металлический калий, амид калия, желатина и сахароза, не увеличивало выхода гидразина [59]. Было показано, что образование гидразина не является результатом фотохимического действия, но обусловлено термическим разложением аммиака первичная реакция, вероятно, протекает в газообразном слое, окружающем нить, с образованием гидразина в более холодной жидкой фазе. Наилучшие [c.23]

    Ряд рассмотренных реакций находит довольно широкое применение, выходящее за пределы лабораторной практики. Сюда следует отнести прежде всего перегруппировки оксимов в амиды, в частности, капролактам можно получать облучением оксима циклогексанона, который также фотохимическим путем синтезируется в тромышленных масштабах нитрозированием циклогексана. Перегруппировка нитронов в оксазиридины - один из наи 5олее удобных методов синтеза этого нагряженного гетероцикла Первой стадией в синтезе азолов яв- [c.90]

    СН2=СН—СО) и сшивающего агента N, N-метил енбисакр ил амида (СН2=СН—СО—NH—СНг—NH—СО—СН2=СН2). Реакция индуцируется химическим или фотохимическим путем в первом случае в качестве катализаторов применяют персульфат аммония — тетраметилэтилендиамин (ТЕМЕД), либо персульфат аммония — 3-диметиламинопропионитрил. При фотополимеризации катализаторами служат ТЕМЕД и рибофлавин при освещении видимым светом. Величина пор геля определяется концентрацией мономеров. Используют ПААГ, как правило, в форме гранул диаметром 1—5 мм. [c.224]


Смотреть страницы где упоминается термин Фотохимические реакции амидов: [c.123]    [c.123]    [c.117]    [c.3]    [c.296]    [c.216]    [c.81]   
Каталитические, фотохимические и электролитические реакции (1960) -- [ c.262 ]




ПОИСК





Смотрите так же термины и статьи:

Фотохимическая реакция



© 2025 chem21.info Реклама на сайте