Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотохимическое выделение водорода

    Аналогичное звено требуется для объяснения фотохимического поглощения и выделения водорода, что будет рассмотрено в следующем разделе. [c.148]

    Фотохимическое поглощение и выделение водорода. Как [c.148]

    Преимущество фотохимического хлорирования по сравнению с термическим заключается в том, что при фотохимическом процессе в значительной степени предотвращаются как разложение сырья в результате пиролиза, так и реакции изомеризации. Реакция начинается практически мгновенно устраняется продолжительный индукционный период с накоплением хлора в реакционном объеме. Это может происходить и при жидкофазном хлорировании в подобных случаях реакция начинается бурно с внезапным выделением тепла и хлористого водорода, что в результате обильного пенообразования приводит к уносу продуктов реакции. Недостатком фотохимических процессов являются увеличенные капиталовложения и эксплуатационные расходы и высокая чувствительность к присутствию подавляющих реакцию примесей. Экономические преимущества фотохимического хлорирования объясняются высоким квантовым выходом. Принимают, что в условиях промышленных установок на каждый излученный световой квант вступает в реакцию около 100 молекул хлора. В зависимости от характера исходного углеводорода, концентрации хлора и температуры ртутная лампа мощностью 400 вт активирует протекание реакции 5—15 кг хлора в час. [c.142]


    Химические реакции, протекающие под воздействием света, называются фотохимическими, а сам раздел физической химии, занимающийся их изучением, получил название фотохимии. Примеров фотохимических реакций можно привести очень много. Так, смесь газов водорода и фтора на свету взрывается, аммиак разлагается на водород и азот, бромид серебра разлагается с выделением металлического серебра, что широко используется в фотографии, процесс отбелки тканей кислородсодержащими соединениями хлора также протекает под воздействием света и т. д. К числу фотохимических процессов относятся и реакции фотосинтеза, в результате которых в зеленых растениях из оксида углерода (IV) и воды образуются различные органические соединения, главным образом углеводы. [c.172]

    Фотохимические реакции. К фотохимическим относятся реакции, обусловливаемые лучистой энергией главным образом видимой части спектра электромагнитного излучения. Например, смесь газон водорода и фтора при ее освещении взрывается бромистое серебро на свету разлагается с выделением металлического серебра, что широко используется в фотографии синтез сложных органических веществ растениями в процессе их жизнедеятельности также имеет фотохимическую основу (фотосинтез) многие краски на солнечном свету блекнут, выцветают и т. д. [c.143]

    Водные растворы обоих нитрилов не поглощают света длины волны больше 2300 А и вполне устойчивы при облучении светом X 3000 А или суммарным излучением ртутной лампы. Если раствор содержит нестабилизированную перекись водорода, то освещение при таких длинах волн вызывает полимеризацию нитрила, обнаруживающуюся по выпадению полимера. Начало полимеризации отмечается помутнением раствора, появляющимся лишь после того, как раствор освещался в течение некоторого времени. Этот индукционный период, повидимому, удлиняется при уменьшении интенсивности света или концентрации перекиси водорода, но более подробных измерений проведено не было. Суспензии полимера в воде обнаруживают зеленовато-желтую флуоресценцию в ультрафиолетовом свете. Все полимеры, полученные таким образом, имели меньший молекулярный вес, чем полимеры, образующиеся под действием рентгеновских лучей из растворов мономеров той же концентрации. В инфракрасных спектрах поглощения полимеров фотохимического приготовления явно обнаруживалось присутствие групп СН,СН и ОН. Также заметно было, что отношение интенсивности полосы ОН к полосам СН или СН было больше в случае фотохимических полимеров, чем в случае радиационных полимеров, в соответствии с более короткими цепями при фотохимической полимеризации. Во всех опытах, проведенных до настоящего времени, начальная концентрация мономера превышала 0,1 М и не наблюдалось выделения кислорода. Во всех случаях наблюдалось однако небольшое, но вполне измеримое уменьшение концентрации перекиси водорода, и интересно отметить, что в трех опытах, в которых тщательно определялось изменение концентрации Н. Оа, частное от деления веса полимера на число разложившихся молекул перекиси имело тот же [c.128]


    Как уже указывалось, убыль кислородного поглощения у пурпурных бактерий на свету Накамура считает доказательством фотохимического образования кислорода. Однако есть более вероятное объяснение если скорости фотосинтеза и дыхания лимитированы наличием водорода, доставляемого одной и той же энзиматической системой, то всякое возрастание фотосинтеза будет подавлять дыхание. Тот факт, что эти организмы ни при каких обстоятельствах не переходят от поглощения кислорода к его выделению, хорошо согласуется с таким объяснением, тогда как он трудно объясним, если фотосинтез и дыхание независимы, как у высших растений. Каждая жирная кислота разлагается пурпурными бактериями с особой, характерной для нее, скоростью, одинаковой и для дыхания и для фотосинтеза в случае смеси кислот их суммарная скорость разложения аддитивна. Это доказывает, что для каждой кислоты существует специфический энзим. [c.115]

    Наблюдения над изолированными хлоропластами, бактериями, адаптированными к водороду водорослями, описанные в главах IV, V, VI, а также кинетические измерения указывают, что фотосинтез — не прямая реакция между двуокисью углерода и водой, а сложная цепь физических, химических и фотохимических процессов. Одна из наболее важных проблем в изучении механизма фотосинтеза — установление первичной фотохимической реакции (или реакций) и выделение ее из нефотохимических процессов последние могут предшествовать фотохимической реакции или следовать за ней. [c.155]

    Стойкость этого полимера к термоокислительной деструкции зависит от условий синтеза, т. е. природы катализатора, растворителя, продолжительности реакции и концентрации пиридина в смеси растворителей. Чем меньше продолжительность процесса и ниже концентрация пиридина в смеси растворителей, тем выше термостойкость полимера [437]. Термоокислительная и фотохимическая деструкция полимера сопровождается его структурированием с выделением СОг, СО, азота (из остатков катализатора) и водорода [431, 433]. Чувствительность поли-2,6-диметил-1,4-фениленоксида к окислению объясняется наличием в нем гидроперокси-дов, образующихся на стадии синтеза, которые выполняют функ- [c.213]

    Фотохимическое выделение водорода можно наблюдать только в отсутствие двуокиси углерода. Если снабдить водоросль двуокисью углерода, последняя действует как водородный акцептор, и фотохимическое выделение водорода превращается в фоторедукцию. Пока клетки не будут совершенно лишены кислорода, кислотное брожение непрерывно выделяет двуокись -углерода поэтому эксперименты с выделением водорода на свету можно проводить, только вводя в ответвление манометра щелочь и принимая в расчет двуокись углерода, поглош,енную при фоторедукцин. [c.149]

    Для объяснения фотохимического выделения водорода необходимо предположить, что фотохимический перепое водорода происходит между водородным донором К На и гидрогеназной системой  [c.149]

    Динитрофенол сильно действует и на фотосинтез и на фоторедукцию, но не оказывает специфического действия на реакцию адаптации. Гаффрон [33,34] находит, что динитрофенол тормозит также водородное брожение в темноте, но не влияет на выделение водорода на свету или даже стимулирует его. Это дока вает, что последний процесс не зависит от энзима, участвующего в процессе образования водорода на свету (см. главу VI). Динитрофенол не имеет сродства с тяжелым металлом, и потому предполагается, что он действует на энзиматически активные белки. Его действие на фотосинтез выражается в торможении переноса водорода от промежуточного восстановленного продукта реакции к двуокиси углерода, так как эта стадия одинакова и в фотосинтезе н в фоторедукции. (Каталитически активные белки могут служить передатчиками водородных атомов, тогда как комплексы тяжелых металлов переносят электроны.) Влияние динитрофенола на водородное брожение требует специального объяснения. Хотя динитрофенол тормозит и фотосинтез и фоторедукцию, он оставляет у адаптированных водорослей лишь одну световую реакцию — фотохимическое выделение водорода. Кажущаяся стимуляция этой реакции динитрофенолом может объясняться устранением потерь, обычно вызываемых реакцией водорода с двуокисью углерода, которая образуется при брожении и недостаточно быстро поглощается щелочами. [c.328]

    В схеме между Z и X допускается промежуточный продукт Y, а X отождествляется с водородным акцептором в гидрогеназной системе Ан это приводит к замкнутому водородному циклу и позволяет, таким образом, объяснить фотохимическое выделение водорода адаптированными водорослями и сочетание оксигидрогенной реакции с восстановлением двуокиси углерода. [c.551]

    Химические свойства воды также определяются ее составом и строением. Молекулу воды можно разрушить только энергичным внешним воздействием. Вода начинает заметно разлагаться только при 2000 °С (термическая диссоциация) или под действием ультрафиолетового излучения (фотохимическая диссоциация). На воду действует также радиоактивное излучение. При этом образуются водород, кислород и пероксид водорода Н2О2. Щелочные и щелочноземельные металлы разлагают воду с выделением водорода при обычной температуре, а магний и цинк — при кипячении. Железо реагирует с водяными парами при красном калении. Вода является одной из причин коррозии — ржавления металлов (с. 156). Благородные металлы с водой не реагируют. [c.101]


    При нагревании магний реагирует и со спиртом. Если магний предварительно протравить иодом то реакция протекает почти так жё быстро, как и с водой. Магний растворяется в разбавленных кислотах с бурным выделением водорода. Амальгама магния ёчень энергично реагирует с водой уже при обычной температуре. Магний в виде ленты или порошка, зажженный на воздухе, горит ослепительно белым пламенем с выделением белого дыма, состоящего из MgO. Свет, испускаемый магнием при горении, богат фотохимически активными лучами. Этим пользуются в фотографии (моментальные съемки при свете магния). Во влажном хлоре магний самопроизвольно загорается, сгорая и в этом случае с энергичным выделением света. Магний обнаруживает сильное сродство но отношению к другим неметаллам. Так, при нагревании он легко соединяется с азотом, образуя нитрид состава MgsNa. Последний получается в значительных количествах вместе с окислом MgO нри обжиге магния в условиях недостаточного доступа воздуха. Магний способен отнимать у многих других соединений их электроотрицательную, составную часть так, реакция его с некоторыми окислами или гидроокисями щелочных металлов протекает даже со взрывом. Со многими металлами он образует сплавы однако лишь некоторые из них имеют значение в технике, так как в большинстве случаев они ломки и слишком легко окисляются. С органическими иодсодержащими соединениями в эфирном растворе магний обт гует магнийалкилиодиды (Гриньяр). [c.277]

    Так, например, образование ацетальдегида и выделение водорода при действии света на этиловый спирт в парах было показано Пататом [7]. Превышение выхода водорода над выходом альдегида в 10 раз, обнаруженное при фотохимическом разложении водных растворов этилового спирта Фаркасом и Хиршбергом [8], было приписано ими одновременному образованию кетена по реакциям [c.172]

Фиг. 10. Фотохимическое поглощение и выделение водорода у севейетм при разном освещении 13] Фиг. 10. <a href="/info/359622">Фотохимическое поглощение</a> и <a href="/info/10559">выделение водорода</a> у севейетм при разном освещении 13]
    Те же самые продукты образуются при пиролизе г ис-стильбена при 550°. Фотохимическая реакция не замедляется кнслородс м или окисью азота это указывает на то, что не образуется достаточно долгоживущих радикалов и что выделение водорода происходит в один элементарный акт в электронно-возбужденном или в горячем основном состоянии цис-стильбена. [c.277]

    Реакция (4.296) может объяснить выделение водорода, если оно действительно имеет место, но этот процесс представляется весьма сомнительным. Основным процессом, приводящим к выделению этана и углекислого газа, является, конечно, не сенсибилизированное разложение уксусной кислоты на 1/2 Нг+1/2 СгНб-ЬСОг (как предполагал Баур), а ее фотохимическое окисление до СгНб и СО2 без образования водорода, но с восстановлением эквивалентного количества и (VI) до и (IV) согласно уравнению [c.247]

    Фотохимическая деструкция. Полимеры в процессе эксплуатации почти всегда подвергаются действию света. Если длина волны достаточно мала, то кванты света настолько велики, что поглощение их полимером вызывает разрыв химических связей макромолекулы с образованием свободных радикалов. В результате инициированной цепной реакции могут изменяться молекулярный вес, строение и свойства полимеров. Например, при действии ультрафиолетового света на разбавленные растворы каучука в атмосфере азота уменьшается молекулярный вес полимера, в более разбавленных растворах он, наоборот, возрастает. При применении света с длиной волны 2300— 4100 А увеличивается жесткость и снижается растворимость каучука. Одновременное выделение водорода и низкомолекулярных углеводо-)0Д0в указывает на разрыв в макромолекуле связей С—Н и С—С. Три температурах порядка 150° С действие ультрафиолетового света приводит к фотолизу (деполимеризации) каучука с образованием изопрена. Световая энергия, сообщаемая полимерам, частично переходит в тепловую. [c.493]

    Стильбены можно превратить в фенантрены облучением УФ-светом [396] в присутствии окислителей, таких, как растворенный молекулярный кислород, РеСЬ, тетрацианоэтилен [397], иод. Реакция представляет собой фотохимически индуцируемое конротаторное превращение 1,3,5-гексатриена в циклогексадиен, сопровождаемое отрывом двух атомов водорода окислителем. Промежуточный дигидрофенантрен однажды был выделен [399]. Использование субстратов с гетероатомами (например, РЬЫ = ЫРН) способствует образованию гетероциклических систем. Эффективной реагирующей частицей должен быть цыс-стильбен, однако часто используются и транс-сшлъ-бены, так как в условиях реакции они изомеризуются в цис-изомеры. Реакцию можно использовать для получения многих конденсированных ароматических систем, например [400]  [c.189]

    В последние годы обнаружена еще одна возможная интересная область применения перхлоратов как катализаторов реакций превращения энергии солнечного излучения в химическую энергию. Хейдт с сотр. " установили, что простой каталитический фотохимический процесс расщепления возможен в воде, содержащей ионизированные перхлораты трех- и четырехвалентного це-рия н избыток свободной хлорной кислоты (концентрация аниона IO4 составляет примерно 2,5—3 М). Часть лучей поглощается при окислении ионов Се (III) до ионов Се (IV), причем выделяется водород другая часть лучей поглощается при обратной реакции восстановления ионов Се (IV) до ионов Се (III) с одновременным выделением, кислорода. При соответствующей конструкции аппарата можно получать водород и кислород в разных точках системы собранные водород и кислород отличаются высокой чистотой (водород не содержит Од, а кислород—Hj) . В дальнейшем они могут быть использованы в качестве источников химической энергии. Хотя, по-видимому, это открытие вносит коренные изменения в область использования солнечной энергии, потребуется еще много времени, пока станет возможным его практическое применение. [c.160]

    Образование метильных радикалов из диметилртути было установлено при фотолизе в присутствии окиси азота, которая мгновенно реагирует со свободными метильными радикалами (стр. 150 . Это подтверждено также исследованием реакций получающихся свободных метильных радикалов с водородом,. метаном и другими углеводородами (стр. 143-45). Тейлор и Джонс показали, чго радикалы, образующиеся при фотохимическом разложениь диметилртути при 200—ЗОО С, вызывают цепную полимеризацию этилена. Реакцией такого же характера является, несомненно, выделение окиси углерода из карбонилор металлов [c.140]

    Все попытки осуществить фотосинтез с чистым хлорофиллом в различных растворителях остались безуспешными. Наоборот исследования, проведенные с хлоропластамп, выделенными из клеток, или даже с фрагментами хлоропластов (зернами), привели к интересным результатам. Взвешенные в воде и выдерживаемые на свету хлоропласты не способны восстанавливать двуокись углерода, но взаимодействуют с более легко восстанавливающимися веществами, как, например, с ионом трехвалентного железа, хиноном и некоторыми простыми красителями. При восстановлении образуются ион двухвалентного железа, гидрохинон и т.д. и выделяется экивалентное количество кислорода. При проведении этой реакции в воде, меченной 0 , оказалось возможным доказать, что выделенный кислород происходит из воды. Таким образом, реакция является фотохимическим разложением воды, происходящим только в присутствии акцептора (А) для образующихся атомов водорода (Р. Хилл, 1937 г.) [c.260]

    Перекисно-ураниловый актинометр практически не изменяется при использовании, так как нужно заменять только перекись водорода, израсходованную вследствие фотохимического распада. После длительной работы раствор доводят до исходного объема отгонкой воды. Восстановления в не происходит. Если, согласно Гейдту [24], восстанавливается в то последний снова превращается в реагируя с Н О , и общий баланс процесса не нарушается. Химизм фотолиза перекиси водорода, сенсибилизированного солями уранила, еще не получил детального разъяснения. Промежуточное образование радикалов ОН доказывается гидроксилированием бензола (ср. Штейн и Вейс [25]), при этом выделение кислорода ингибируется в большей или меньшей степени. Главные продукты реакции — фенол и дифенил, в меньпшх количествах образуются пирокатехин, высшие фенолы и смо пл. [c.381]

    Одновременно с Ганнингом велись исследования в Хенфорде по выделению фотохимическим методом изотопа O Hg из природной смеси [16-20. Для опытно-промышленного производства этого изотопа, который планировалось использовать в ядерных реакторах как теплоноситель, предлагалась двухступенчатая схема разделения. На первой стадии смесь паров ртути, хлористого водорода и бутадиена при давлении 50 тор облучалась светом ртутных ламп, наполненных изотопом O Hg. Полученная каломель обогащалась изотопом O Hg, 201 Hg, i Hg. На второй стадии полученная смесь изотопов облучалась ртутными лампами, наполненными природной ртутью, свет которых пропускался через изотопный фильтр, содержащий ртуть, обогащённую по изотопу 20" Hg. В этих экспериментах не были достигнуты расчётные параметры ни по производительности процесса, ни по концентрации обогащённой ртути, и работы по созданию промышленной установки были прекращены. [c.489]

    Ван Ниль и Гаффрон считают, что окисление воды представляет собой одну (или даже единственную) из первичных фотохимических реакций обычного фотосинтеза (как в схеме на фиг. 16). Таким об-pa30i[, предположение о неучастии восстановителей-заменителей воды в фотохимическом процессе не исключает логического вывода, что и в бактериальном фотосинтезе первичным фотохимическим процессом является окисление воды. Отсюда отсутствие выделения кислорода на свету пурпурными бактериями можно объяснить двояким образом. Согласно одной гипотезе, предложенной Гаффроном, промелсуточный продукт окисления воды ОН может восстанавливаться у бактерий восстановите.мми-заменителями — водородом, сероводородом и т. д., так как эти организмы содержат активную гидрогеназную систему и не содержат энзима Eq, выделяющего кислород. Вторая гипотеза, предложенная ван Нилем, предполагает, что первичный продукт, получающийся при окислении воды у бактерий ОН , несколько отличен от продукта, получающегося у зеленых растений ОН - , и поэтому он не может превратиться в [c.174]

    Выделение кислорода при фотосинтезе может идти в порядке, обратном какому-либо из этих механизмов. Поэтому рассмотрим следующие возможности 1) промежуточное образование перекиси водорода, нанример при фотохимической реакции, обратной (11.2), за которой следует или окислтение этой перекиси по реакции, обратной (11.1), или, что более вероятно, ее дисмутация по уравнению (11.3) 2) подобный же процесс с органическими перекисями и 3) выделение кис.торода без промежуточного образования свободных перекисей, т. е. реакция, обратная (11.4). [c.291]

    Гидроксиламин не оказывает также действия на восстановление двуокиси углерода бактериями (с водородом или сероводородом в роли восстановителей). Как видно из глав VI и VII, эти процессы имеют или одинаковый, или сходный с обычным фотосинтезом первичный фотохимический процесс, ведущий к образованию первоначального продукта окисления (ОН или Z. Однако различия этих первичных продуктов заключаются в том, что они разлагаются с выделением кислорода в нормальном фотосинтезе, но восстанавливаются водородом, сероводородом или иными восстановителями при фоторедукцин у бактерий или адаптированных водорослей. Малая чувствительность последних процессов к гидроксиламину ясно указывает, что чувствительный к этому яду энзим участвует лишь в стадии выделения кислорода в фотосинтезе. [c.320]

    Варбург, Бёрк и сотрудники [51, 52], а также Мур и Дэггар [44] определили квантовый выход фотосинтеза из отношения прироста выделения кислорода к приросту поглощения в области выше компенсационного пункта при этом не было замечено систематического отличия между данными, полученными этим путем, и результатами измерений при слабом свете (иными словами, в этих опытах световая кривая выглядела прямой, проходящей через начало координат). Кок [42, 48], однако, нашел, что Р=/(/) является прямой, проходящей выше нулевой точки координат, и отсюда пришел к заключению, что квантовый выход истинного фотосинтеза ниже квантового выхода фотохимического процесса ( фотодыхания ), доминирующего при слабом освещении, насыщающегося вблизи компенсационного пункта и идущего с той же скоростью насыщения при дальнейшем повышении интенсивности света. Наконец, Френч, Вассинк и другие, работая с пурпурными бактериями, обнаружили при умеренном освещении приблизительно линейные световые кривые, экстраполяция которых по прямой проходила ниже нулевой точки координат. Они использовали значение тангенса утла наклона при среднем освещении для расчета истинного квантового выхода бактериального фотосинтеза, исходя из того допущения, что при слабом свете фотохимический процесс либо вообще не приводит к потреблению водорода и двуокиси углерода, либо использует их с гораздо меньшим квантовым выходом, чем бактериальный фото- [c.571]

    В более поздних экспериментах подобного типа Уиттингем и Бишоп [322] нашли, что при 4° С выделение кислорода, вызванное продолжительной вспышкой, значительно меньше. Однако предварительное облучение короткой вспышкой увеличивало выход до значения, наблюдаемого при 20° С. В этом случае оптимальный интервал между вспышками был равен 16 с вместо 1 с (фиг. 132). Выделение кислорода изолированными хлоропластами шпината при реакции Хилла с феррицианидом в качестве акцептора водорода также было максимальным при 4° С, когда интервал между вспышками был равен приблизительно 18 с. Из этих результатов следует, что существуют два фотохимических процесса, разделенных темновой термической реакцией, превращающей продукты первого процесса в исходные реагенты второго. Скорость термической реакции была меньше при низкой температуре, но время жизни продукта в этих условиях было большим. Возможно, что большее время жизни продукта, образующегося при коротковолновом облучении, объясняет результаты опытов Эмерсона и др. [79], описанных на странице 244, а именно тот факт, что дальний красный свет при 5° С более эффективен, чем при 20° С. Дело в том, что измерения периодически проводились при стандартной длине волны 660 нм, для которой была определена разность между [c.267]

    Хлорирование ксилолов в присутствии инициаторов имеет те же закономерности, что и фотохимическое хлорирование. Как и при фотохимическом способе первая стадия хлорирования (до замещения четырех атомов водорода) протекает с большой скоростью и пракшчески с полным использованием хлора, взятого в реакцию. Реакция сопровождается выделением большого количества тепла тепловой эффект реакции хлорирования ксилолов до гексахлорпроизводных составляет 628 кДж/моль. Продолжительность этой стадии определяется скоростью подачи хлора. В дальнейшем скорость реакции замедляется, и для получения продукта исчерпывающего хлорирования в боковой цепи необходим по меньшей мере двукратный избыток хлора. Как и при фотохимическом способе первая стадия процесса проходит при температурё 70-90 °С, последняя-при 110-120 °С [79]. [c.38]

    Бензол, прошедший азеотропную осушку в колонне 1, из емкости сухого бензола 2 дозируется в реактор фотохимического хлорирования 3, куда одновременно подается хлор. Тепло реакции снимается в выносном контуре с принудительной циркуляцией. Отхлорированный раствор проходит последовательно колонны 4 и 5, где отгоняются растворенные кислые газы (хлор, хлористый водород) и бензол. Выделенный на колонне 5 бензол возвращается на азеотропную осушку, а жидкий расплав гексахлорциклогексана из куба колонны поступает на чешуирование в барабанный кристаллизатор 6. [c.433]

    Несмотря на то что для разрыва С—С1-связей была бы достаточна энергия фотонов, соответствующая области спектра с длиной волны около 3,5-10 м (3500 А), низкомолекулярные алкилхлориды вследствие селективности действия фотонов не поглощают свет с длиной волны более 2,2-10 м (2200 A) и являются светостойкими соединениями. При исследовании фотохимического разложения вторичного бутилхлорида (низкомолекулярной модели поливинилхлорида) было нaйдeнo , что в присутствии ацетона он разлагается с выделением хлористого водорода при поглощении света с длиной волны 2700— 3000 А. Фотохимическое дегидрохлорирование вторичного бутилхлорида в присутствии ацетона связано, по-видимому, с образованием в качестве промежуточных продуктов -хлор кетонов, карбонильные группы которых имеют полосы поглощения в области спект- [c.308]

    В присутствии активных кубовых красителей. Медь и другие металлы, которые в небольших количествах оказывают значительное влияние на фотохимическую активность красителей всех классов, предохраняют от выделения перекиси водорода при облучении окрашенного хлопка во влажной атмосфере. Индантреновый оливковозеленый В улучшает светопрочность Индантренового желтого ОР и препятствует снижению прочности волокна под действием желтого красителя другие синие и зеленые красители также оказывают защитное действие, но ни один не является столь эффективным, как Индантреновый оливково-зеленый В. [c.1413]


Смотреть страницы где упоминается термин Фотохимическое выделение водорода: [c.396]    [c.149]    [c.1137]    [c.290]    [c.132]    [c.121]    [c.89]    [c.433]    [c.1397]    [c.1397]   
Фотосинтез 1951 (1951) -- [ c.148 , c.149 ]




ПОИСК







© 2025 chem21.info Реклама на сайте