Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан восстановитель

    Методом хлорной металлургии получают кремний и такие тугоплавкие цветные металлы, как титан, ниобий, тантал и др. Основным процессом при этом является превращение оксидов металлов в хлориды с участием восстановителя, нанример углерода (в виде кокса)  [c.293]

    ЭТИМ изменяется и устойчивость соединений, отвечающих определенной степени окисления элемента. Например, оксиды Т10 и УО, содержащие титан и ванадий в степени окисления +2, — сильные восстановители, а аналогичный оксид цинка (2пО) восстановительных свойств не проявляет. [c.498]


    Для титана в отличие от его аналогов известен гидроксид Т (ОН)з, обладающий только основными свойствами. Вследствие этого он хорошо взаимодействует с кислотами, давая соответствующие соли, например ТГз (804)3, причем в водных растворах таких солей титан существует в виде аквакомплексов [Т1 (Н20)в1 фиолетового цвета. Титан в степени окисления +3 неустойчив и является сильным восстановителем, окисляясь в растворах кислородом воздуха  [c.237]

    Титан — восстановитель, средней силы [35] [c.410]

    Хорошие результаты получаются также при использовании различных редукторов (см. 100 и 109). В этом случае необходимо иметь в виду, что во многих природных материалах наряду с железом содержится титан. При отсутствии титана можно пользоваться цинковым, кадмиевым и другими редукторами. Однако большинством металлов восстанавливается также титан. Поэтому в присутствии титана для восстановления железа необходимо пользоваться металлом, который имеет окислительный потенциал меньший, чем железо, но больший, чем титан (при переходе в трехвалентный). Наиболее доступным и достаточно изученным восстановителем для этой цели является металлический висмут. [c.380]

    Можно ли получить титан из его соединений, используя в качестве восстановителя углерод  [c.166]

    Оксид титана (И) ТЮ. Получен впервые Билли в 1913 г. в виде черно-бурого порошка накаливанием чистой двуокиси титана до 1700 °С. Гидроксид Т1(0Н)2 получается действием сильных восстановителей на четыреххлористый титан и последующим осаждением аммиаком. Соли двухвалентного титана технического значения пока не имеют, так как обладают большой склонностью к гидролизу и быстрой окисляемостью. Их можно получить восстановлением кислых растворов титанатов амальгамой натрия. [c.295]

    Кальций используется в качестве восстановителя при извлечении из соединений почти всех редкоземельных элементов и таких металлов как уран, торий, хром, ванадий, цирконий, цезий, рубидий, титан, бериллий, при очистке свинца от олова и висмута, для очистки от серы нефтепродуктов, для производства антифрикционных и других сплавов, в виде металла и сплавов в химических источниках тока. [c.240]

    Солеобразные галиды являются восстановителями и легко переходят в высшую степень окисления - -4. Наличие галогенов или их соединений разрушает реагирующий с ними титан или цирконий, особенно в области высоких температур. [c.329]

    Металлотермические методы получили широкое применение. Кроме хрома, так получают марганец, титан и некоторые другие металлы. В качестве восстановителей, кроме алюминия и кремния, применяют магний, натрий. [c.168]


    Для титана в отличие от его аналогов известен гидроксид Ti(OH)3, обладающий только основными свойствами. Титан в степени окисления +3 неустойчив и является сильным восстановителем, окисляясь в растворах кислородом воздуха  [c.393]

    В том случае, когда раствор содержит какой-либо окислитель и восстановитель, добавляется ток реакции окисления и восстановления, поэтому эффективность использования тока становится не более 100 % (при добавлении тока реакции восстановления). Возможны случаи, когда эта величина превышает 100 % (при добавлении тока реакции окисления). Следовательно, необходимо, насколько это возможно, удалять из раствора Окислители и восстановители. Растворенный кислород выступает в роли окислителя. Если пленка обладает неэлектронной проводимостью (алюминий, тантал и другие металлы), реакция окисления и восстановления не развивается, поэтому проблемы не возникает. Следует обратить внимание на то обстоятельство, что ионы водорода выступают в качестве окислителя по отношению к неблагородным металлам (железо, хром, титан, цирконий и др.), причем при потенциале, более благородном, чем потенциалы водородного электрода, такая проблема отсутствует. [c.194]

    Компоненты сплавов (около 59% используемого олова с медью (бронзы), медь и цинк (латунь), сурьма (баббит), цирконий (для атомных реакторов), титан (для турбин), ниобий (для сверхпроводников), свинец ( для припоев, легкий припой - 1/3 олова и 2/3 свинца по массе) для нанесения защитных покрытий на металлы (около 33% ), в том числе для производства белой жести, восстановитель ионов металлов, черновой анод при электролизе, сетки из олова - для отчистки металлических газов от паров ртути благодаря образованию амальгамы, в производстве фольги, для отливки деталей измерительных приборов, органных труб, посуды, художественных изделий, искусственный радиоактивный изотоп 8п (Т = 1759 суток) - источник у - излучения в у - спектроскопии. [c.74]

    За рубежом в качестве восстановителя широко применяются сероводород [180—182] и другие активные сульфиды (меркаптаны, трехсернистая сурьма). От образующихся осадков четыреххлористый титан отделяют декантацией, фильтрованием или перегонкой. Рекомендуют обработанный сульфидом четыреххлористый титан пропускать через колонну, заполненную известью [183]. [c.557]

    На рис. 74 можно видеть, что кривыеД0° для многих хлоридов пересекаются друг с другом, следовательно, взаимная их устойчивость меняется с изменением температуры. Это необходимо учитывать при анализе хлорирования многокомпонентного сырья, когда хлориды одних металлов могут быть хлорирующими агентами по отношению к другим металлам или окислам. На том же рисунке видно, что при данной температуре металл способен вытесняться из хлорида другими металлами (восстанавливаться) тем легче, чем выше егоДО°, и, наоборот чем ниже лежит кривая AG° образования хлорида, тем сильнее восстановительные свойства данного металла. Металлические титан, цирконий и гафний получают восстановлением их тетрахлоридов магнием или натрием. Кривые Д0°, Mg и Na l лежат значительно ниже кривых указанных тетрахлоридов, поэтому реакции восстановления протекают практически нацело. Выше 2000° в качестве восстановителя может быть использован водород, так как в этой области кривая для реакции (40) лежит ниже кривых для тетрахлоридов  [c.259]

    Титан — восстановитель средней силы. По данным Дительма И Форстера 32, реальный потенциал 0,5 М раствора титана (по общему содержанию титана) в 4 н. серной кислоте равен [c.488]

    Полум.енный таким образом и очищенный посредством перегонки тетрахлорид титана является основным исходным материалом для промышленного производства металлического титана. В качестве восстановителей титана из его тетрахлорида применяют такие металл , , которые, будучи, с одиой стороны, весьма активными, с другой — не за1 рязняли бы получающийся титаи. Такими являются щелочные и н1,елочнозсмельные металлы, которые не образуют с титаном ни твердых растворов, ни соединений и из которых практическое значение как восстановители Т1Си имеют магний и наг-рий. В соответствии с этим разработаны магние- и натриетермиче-ские способы промышленного производства метал лического титана. [c.273]

    Следующие за скандием переходные элементы титан и ванадий V содержат соответственно два и три -электрона. Для них более характерны высшие степени окисления - -4 — для и - -4, + 5 — для V. Свойства соединений титана в высшей степени окисления напоминают свойства аналогичных соединений олова (например, жидкие тетрахлориды Т1С14 и 8пС 4, образование комплексов и т. д.). Соединения со степенью окисления +2 — сильные восстановители. Производные оксида титана (IV) Т10г — сложные оксиды титана — важные сегнетоэлектрические материалы. [c.154]

    Получение простых веществ при восстановлении хлоридов — основа хлорной металлургии. В этом методе руды подвергаются хлорированию и нужные элементы извлекаются из сырья в виде хлоридов. Хлориды разделяют и в да/1ьнейшем подвергают восстановлению. Таким путем, в частности, получают титан. Из рутила TIO2 хлорированием в присутствии восстановителя углерода получают тетрахлорид титана, который затем восстанавливают магнием (в атмосфере аргона или гелия)  [c.194]


    Например, труцно точно оттитровать титан (111), так как он, будучи сильным восстановителем, быстро окисляется кислороцом воздуха, даже применение специальной аппаратуры не всегда гарантирует достаточную точность опрецеления. Поэтому применяют метоц замещения,а именно в исследуемый раствор титана (] J) быстро прибавляют раствор соли железа (III), взятый в избытке  [c.48]

    Большая химическая активность магния позволяет использовать его в качестве восстановителя для получения таких трудно восстанавливаемых металлов, как ванадий,.....хром ерилдий, титан, циркрвий  [c.56]

    Кальций может быть использован в качестве восстановителя при температуре ниже 1700°С и атмосферном давлении. По данным некоторых авторов, для этой цели может быть применен и титан ( 0,001 ммрт. ст., 1400°С). Но металл в обоих случаях получается загрязненным, так как разделить продукты реакции технологически чрезвычайно трудно [16, 17]. [c.171]

    Закись ТЮ, окись TI2O3 и промежуточные фазы можно получить, действуя на TIO2 восстановителями титаном, магнием, цинком, углеродом и водородом, Повыщение температуры способствует получению соединений с меньшим содержанием кислорода. Так, при восстановлении титаном в интервале 900—1000° образуется преимущественно TI2O3, а при 1400—1500° — ТЮ. Все окислы титана имеют высокую температуру плавления (табл. 54). Закись, окись и промежуточные фазы сравнительно устой- [c.216]

    Иодиды. С иодом титан образует иодиды TiU, TU3 и Tilj сведения об образовании Til нуждаются в проверке. Иодиды наименее устойчивы среди галогенидов титана. Они образуются при взаимодействии иода с титаном и его сплавами но из материалов, содержащих кислород, иодиды получить нельзя. Тетраиодид легко подвергается термической диссоциации с выделением титана и иода. При взаимодействии тетраиодида с восстановителями возможно большое число обратимых реакций соотношение между количествами образующихся при этом веществ зависит от температуры и давления. Например, взаимодействие TU4 с титаном в вакууме (- Ю" мм рт. ст.) можно представить схемой [c.230]

    Восстановление тетрахлорида титана магнием. Т1С14 восстанавливается рядом металлов (см. рис. 74), однако не все они пригодны для практического использования. Восстановитель не должен содержать примесей, загрязняющих титан, не должен образовывать с ним твердых растворов и соединений. Хлориды, получающиеся при восстановлении, должны просто и полностью отделяться от титана. Наконец, восстановитель должен быть дешев. Этим требованиям наиболее пол- [c.269]

    Раствор ЫзгЗгОз нужно сохранять в закупоренных и защищенных от света склянках. Окисление триосульфата кислородом воздуха идет очень медленно в отличие от растворов таких восстановителей, как хлористый титан и хлористое олово. Однако тиосульфат натрия имеет ряд недостатков даже слабые кислоты, например угольная, медленно разлагают его  [c.406]

    Магний и кальций служат восстановителями при пО лучении других металлов в металлургических процессах. Магнийтермией получают титан, бериллий, цирконий кальцийтермией — уран, торий, цирконий, редкоземельные металлы. [c.238]

    Сравнивая теплоты образования Д/7 различных хлоридов, легко убедиться, что в качество восстановителя при получении металлов нз их хлоридов лучше всего было бы употреблять цезий. Однако практическое примеиепие нашли калий, натрий и кальций как более доступные металлы. Пользуясь ими, можно получить из соответствующих хлоридов торий, титан, цирконий, скандий, марганец и некоторые другие металлы. Необходимо помнить, что приведенный в табл. 2 ряд теплот образования хло- [c.54]

    Из переходных металлов чаще всего используется титан. Применяют, как хлорид татана в восстановленной форме,TI I3 (и тогда сокатализатор является активатором), так и Ti U (тогда сокатализатор действует как восстановитель и как активатор). Реакции, протекающие во втором случае [144]  [c.143]

    Титан в 2-валентном состошии - сильный восстановитель. Ионы двухвалентного состояния восстанавливают воду с образованием водорода, поэтому растворы солей двухвалентного титана не существуют. Даже кристаллический Т10 разлагает воду. [c.123]

    Треххлористый титан впервые был получен в 1846 г. Все способы получения треххлористого THiana сводятся к восстановлению TI I4 различными восстановителями, а именно водородом [118—121], титаном [41, 115, 122—124], кремнием [125, 126], натрием [127— 129], алюминием [130—134] и другими элементами [130, 135, 136]. [c.544]

    В производстве четыреххлористого титана обычно применяют 65%-ный хлоргаз, образующийся в электролизерах при получении магния. Установлено, что разбавление хлора воздухом не влияет на скорость хлорирования двуокиси титана, а также на качество получаемого Ti l4 [158]. Однако наличие кислорода в хлоре вызывает сгорание части кокса (восстановителя), увеличивает количество выделяющегося тепла, что ограничивает производительность хлоратора. Предложен способ [159], заключающийся в том, что разбавленный хлор абсорбируют четыреххлористым титаном, а затем при нагревании выделяют концентрированный хлор и направляют его на хлорирование. [c.546]


Смотреть страницы где упоминается термин Титан восстановитель: [c.648]    [c.272]    [c.151]    [c.366]    [c.87]    [c.295]    [c.646]    [c.655]    [c.226]    [c.269]    [c.193]    [c.350]    [c.395]    [c.474]    [c.355]    [c.557]    [c.558]   
Химический анализ (1966) -- [ c.488 ]




ПОИСК





Смотрите так же термины и статьи:

Восстановитель



© 2025 chem21.info Реклама на сайте