Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Технологический выход реакции

    Существенным преимуществом фотохимического хлорирования парафиновых углеводородов является высокий выход продуктов хлорирования на единицу реакционного объема (удельная производительность процесса). Например, удельная производительность реакционного объема при фотохимическом хлорировании была значительно выше (450 г л) по сравнению с термическим процессом 300 г л). Это обстоятельство может иметь практическое значение при решении вопросов аппаратурно-технологического оформления реакций хлорирования бутана и других газообразных парафиновых углеводородов. [c.90]


    Следует упомянуть о другом технологическом процессе, который, как сообщают, был позднее использован фирмой Копперс [2]. В этом процессе применяется кислотный алюмосиликатный катализатор [18, 22] при условиях реакции, аналогичных режиму, применявшемуся при использовании катализатора иОР сравнимыми получаются и выходы при одинаковом соотношении олефинов ароматический углеводород. Быть может, наиболее интересными особенностями этого катализатора являются его стабильность и легкость регенерации при помощи регулируемого сжигания. Поэтому процесс желателен для реакции деалкилирования тяжелых алкилатов, чтобы образующийся бензол возвращался в систему алкилирования. [c.495]

    Не следует противопоставлять химическую кинетику и химическую термодинамику. На основе термодинамических закономерностей проектировщик, инженер или исследователь устанавливает в целом наиболее благоприятную, с точки зрения выхода целевого продукта, область протекания химических реакций. Химическая же кинетика позволяет в термодинамически разрешенной области рассчитать концентрации (не равновесные, а кинетические) продуктов реакций, материальный баланс, геометрические размеры реакционных аппаратов и оптимизировать технологические параметры процессов. [c.15]

    Давление является вторым по значимости технологическим параметром процесса каталитического риформинга. Значимость его определяется тем, что снижение давления приводит к увеличению селективности процесса риформинга. Со снижением давления возрастает интенсивность реакций ароматизации, уменьшается скорость гидрокрекинга углеводородов. Как следствие этого - увеличивается выход жидкого продукта и водорода, уменьшается выход лёгких углеводородов С -С4.  [c.12]

    Выход реакции обычно значительно ниже теоретического (найденного стехиометрическим расчетом) по следующим причинам 1) обычно перед достижением состояния равновесия реакция получения целевого продукта прерывается (разность скоростей прямой и обратной реакций очень мала) 2) главной реакции часто сопутствуют побочные, приводящие к увеличению расхода исходных веществ 3) в технологическом процессе существуют различные потери, не учтенные в теоретическом расчете. Если влияние этих факторов известно (по работе какой-нибудь промышленной установки), то теоретический расчет можно скорректировать, умножив результат вычислений на определенный в практических условиях коэффициент (меньше единицы). [c.102]


    Технологические расчеты, как известно, базируются на физикохимических принципах осуществления процессов и сводятся к их количественной интерпретации. Они включают вычисление выходов реакций и скоростей процессов, расчеты материальных и тепловых потоков, определение размеров и числа аппаратов, определение расхода сырья, энергии и других производственных затрат и пр. Часть таких расчетов, например теоретическое вычисление равновесия реакций, расчет типовых аппаратов студенты выполняют в процессе общетехнической подготовки, при изучении курсов физической химии, процессов и аппаратов химической техники и некоторых других. [c.3]

    Этот пример еще раз подчеркивает необходимость термодинамического анализа любого технологического процесса до попытки его практического осуществления. Напомним еще раз, что запреты термодинамики окончательны и не требуют экспериментальной проверки, т. е. выход реакции, больший термодинамического предела, получить невозможно, и мастерство технолога заключается в достижении результата, наиболее близкого к этому пределу. [c.426]

    Радиационная полимеризация идет в более легких по сравнению с химической полимеризацией технологических условиях (при нормальной температуре, более низком давлении и т. д.). Полимеры, полученные при воздействии ионизирующего излучения, обладают более высокими физико-механическими свойствами вследствие отсутствия в них примесей катализатора и продуктов термического разложения, которые присущи полимерам, полученным обычными химическими способами. Такие полимеры, как и полимеры, полученные другими способами, характеризуются высокой молекулярной массой, достигающей тысяч и сотен тысяч единиц. Поэтому для процессов радиационной полимеризации, так же как для процессов радиационного модифицирования полимеров, целесообразно использовать понятие радиационно-технологического выхода процесса, определяемого как произведение радиационно-химического выхода реакции О на молекулярную массу продукта М [3]. [c.11]

    Масштабирование реакторов при использовании частичного подобия, с технологической точки зрения при масштабировании следует стремиться к достижению, по крайней мере, того же выхода с единицы объема образца, что и в модели. В наших предыдущих рассуждениях, касающихся идентичности состава и физических свойств реагирующей смеси в обоих аппаратах, это условие сводилось к сохранению одинаковых скоростей реакции в сходственных точках модели и образца [c.464]

    При осуществлении параллельной реакции и возврате непревращенного сырья (Л4) на первую стадию технологические выходы продуктов В и О описываются следующими выражениями  [c.20]

    Когда в условиях приведенной на рис. Г-5 схемы осуществляется последовательная реакция и непревращенное вещество и промежуточный продукт возвращаются на повторное использование (6=1), технологические выходы можно выразить следующим образом  [c.20]

    Из структуры выражений (1-16) —(1-19) следует, что технологический выход продуктов не только последовательных, но и параллельных реакций определяется степенью превращения исходного вещества, а также относительной величиной потерь сырья (Ра, ь Ра. з) на первой и третьей стадиях и продуктов (Рв. з, Рс, з) на третьей стадии. [c.21]

    Однако для оценки практической осуществимости того или другого технологического процесса недостаточно одних лишь термодинамических соображений. Часто наиболее решающим фактором является скорость реакции, т, е. время, потребное для того, чтобы реагирующая система достигла равновесного состояния. Даже при самых благоприятных конечных выходах реакция не может быть использована на практике, если она протекает слишком медленно, когда не могут быть достаточно использованы ни объем аппаратуры, ни исходные материалы. При комнатной температуре эквивалентные количества водорода и кислорода полностью соединяются в водяной пар, но мы не могли бы использовать реакцию в этих условиях для приготовления HgO, так как она идет чрезвычайно медленно и первые следы продуктов могли бы быть обнаружены лишь через много тысяч лет после начала реакции, а закончилась бы она лишь через миллиарды лет ( 345). [c.482]

    Выход — это далеко не однозначное понятие. Иногда под ним понимают абсолютное количество полученного продукта (в г, кг, моль и кмоль), но чаще выход выражают в долях единицы или в процентах на взятое сырье. Кроме того, выход применяют для характеристики систем разного масштаба — только реакционного аппарата [химический выход), какого-либо узла производства или технологической схемы в целом, когда учитывают не только расход сырья на химические реакции, но и различные потери технологический выход). Далее мы будем применять понятие только химического выхода. [c.14]


    Технологический выход пербората натрия по току определяется продуктом, образовавшимся по реакциям (4) и (5). За счет реакций (6) — (8) он может оказаться значительно ниже электрохимического выхода по току, характеризующего соотношение скоростей процессов (I) и (3). [c.51]

    В этом уравнении величина At выражает среднюю разность температур между греющим и нагреваемым теплоносителями Д = = — 2ср При расчете теилообменного аппарата обычно бывает задана температура нагреваемого теплоносителя на выходе из аппарата /г- Величина ее определяется технологическими требованиями, обусловленными производственными условиями, в которых работает тепловое оборудование. Это та температура, до которой нужно довести вещество для обеспечения протекания соответствующей химической реакции переработки или обогащения сырья, выпаривания, дистилляции, сушки и т. д. [c.12]

    Основные характеристики технологических процессов. Упомянутые методы расчета (вместе с экспериментальными методами) позволяют приблизительно определять температуру, давление и максимальный выход — основные параметры данного химического процесса, а также состав реакционной смеси после определенного времени реакции. [c.27]

    Малеиновый ангидрид образуется при обычном давлении и очень большом избытке воздуха по отношению к бензолу (21 1) степень конверсии равна 40—50% выход составляет 60—65%. На промышленных установках около 35—40% бензола превращается в продукты горения с выделением большого количества тепла, отвод которого из зоны реакции представляет одну из сложнейших технологических проблем, так как температура в реакторе определяет конверсию в очень [c.172]

    Подбором технологического режима и состава катализатора достигается определённая сбалансированность всех реакций, приводящая к получению допустимого выхода жидкого продукта - риформата с заданным октановым числом при максимально возможном межрегенерационном периоде. [c.36]

    Осуществление процесса окислительного дегидрирования с использованием катализатора в качестве переносчика кислорода имеет ряд существенных преимуществ по сравнению с процессом в обычном его оформлении — с подачей всего необходимого количества кислорода в реактор. Процесс становится взрывобезопасным, продукты реакции не разбавляются инертным газом (азотом), резко снижается выход кислородсодержащих продуктов. Все это упрощает технологическое оформление процесса. [c.686]

    Изучение изменений внутренней энергии прн химических превращениях имеет большое значение для развития теоретических основ химии, так как является одним из основных путей для изучения энергии отдельных химических связей в молекуле и количественного познания прочности этих связей и реакционной способности молекул. Кроме того, изменения внутренней энергии при реакции (или теплота реакции) являются необходимыми исходными величинами для термодинамических расчетов химических реакций (определение константы равновесия, выход продуктов реакции), имеющих большое значение для химических исследований и в химико-технологической практике. [c.56]

    Продукты реакции на выхода из реакционной печи охлаждаются сначала в трубчатом холодильнике до 300—350°, а затем в водяном скруббере до 60—70°, после чего подвергаются промывке натронной известью для удаления из них органических кислот. Охлажденные и очищенные газы пиролиза направляются в ацетиленовый конвертор, в котором на хромо-никелевом катализаторе при температуре около 200° ацетилен гидрируется до этилена. На выходе из ацетиленового конвертора газы компримируются до 18—20 amu, подвергаются промывке маслом, адсорбции углем и обработке щелочью для освобождения от бензиновых углеводородов и СОг и направляются в секцию низкотемпературной ректификации, где из них выделяют этилен, пропилен, бутилен, бутадиен, этан и горючие газы (метан, водород). Горючие газы используют в качестве технологического топлива, а этан возвращают в процесс. [c.53]

    Пытаясь рационализировать процесс синтеза этилового алкоголя, применяя те же кислотные скрубберы, мы изучали условия протекания реакции между этиленом и серной кислотой, не прерывая процесс и основываясь на принципе работы батареи реакционных аппаратов [41. Ока алось, что, используя любые варианты работы скрубберов, но не изменяя их конструкции, нельзя достигнуть одновременного снижения расхода серной кислоты и увеличения коэффициента использования этилена в газе (табл. 1). Из данных табл. 1 видно, что с понижением расхода кислоты на единицу спирта выход последнего падает. Эта закономерность подтверждает абсолютную неприменимость скрубберов в качестве реакционных аппаратов в технологическом процессе синтеза. [c.26]

    При химических процессах длительность технологической обработки, связанной с превращением веществ, изменением их агрегатного состояния, определяется химическими свойствами обрабатываемых веществ, концентрацией реагентов, температурой, давлением, характером и активностью катализатора и др. Многие из этих факторов определяют и полноту осуществления реакции, выход продукции с единицы сырья. [c.142]

    Применение стационарных катализаторов позволяет снизить температуру процесса и уменьшить расход водорода. Однако при этом снижается выход химических продуктов, так как именно в жидкофазном процессе в присутствии малоактивных плавающих катализаторов реакции восстановления кислород- и азотсодержащих функциональных групп протекают с умеренной скоростью, сравнимой со скоростью расщепления сырья с образованием ценных легких продуктов. Очевидно, что выбор между более или менее активными катализаторами должен решаться в каждом отдельном случае в зависимости от целей процесса и характера сырья. Применительно к технологическим целям, изложенным выше, подбор катализаторов [c.46]

    В то же время, при слабой активности кислотной функции скорость реакций с участием иона карбония, включая дегидроизомеризацию и дегидроциклизацию, недостаточно велика, что, в свою очередь, должно вести к увеличению образования углеводородов -С и к снижению выхода риформата, т.е. к снижению селективности поцесса. Активность кислотной функции катализатора риформинга в основном определяется наличием на его поверхности хлора. При этом вполне закономерно ставится вопрос какое же конкретное содержание хлора должно поддерживаться на поверхности катализаторов риформинга, как алюмоплатиновых, так и новых би- и полиметаллических. Проведенные нами исследования показали, что для алюмоплатинового катализатора АП-64 оптимальное содержание хлора находится в пределах 0,55-0,65 % мае. Потеря хлора ниже 0,55 % приводит к значительному снижению активности и стабильности катализатора, при превышении оптимума наблюдается резкое увеличение гидрокрекинга углеводородов, падение выхода риформата, быстрое закоксовывание катализатора. Для полиметаллических платино-рений-кадмиевых катализаторов (типа КР-104, КР-108, КР-110) оптимальное содержание хлора, как показали наши исследования, находится на уровне 0,9-1,0 % мае. Регулирование содержания хлора на поверхности катализатора во время его эксплуатации служит технологическим приёмом, использование которого, наряду с обычными параметрами процесса, делает возможным получение высоких выходов высокооктанового бензина или ароматических углеводородов. [c.38]

    Основные показатели эффективности функционирования элементов ХТС выражают в виде коэффициентов полезного действия (к. п. д.) элементов или величин, характеризующих фактический выход химического продукта из элемента ХТС, которые для технологических процессов собственно химического превращения представляют собой степени превращения химических компонентов, а для технологических процессов межфаз-ной массопередачи — степени межфазного перехода (степени разделения) или коэффициенты извлечения. К. п. д. элементов показывают степень приближения технологического процесса к равновесию. Расчеты к. п. д. требуют знания равновесных соотношений, хотя эти величины определяются в основном кинетикой процесса фактическое число компонентов, вступивших в химическую реакцию, или количество поглощаемого компонента зависит соответственно от скорости химического превращения или от скорости массопередачи. [c.15]

    Тепло, используемое в печи Qo, определяется как разность теплосодержаний продукта при выходе из печи и при поступлении в печь и обусловлено технологическим процессом. Если при нагреве продукта протекает также химическая реакция, то в значение Qo необходимо включить также тепло, выделяющееся в результате реакции. [c.63]

    Некоторые результаты анализа полученного пирита Приведены в табл. 2. Как видно из таблицы, реакция FeS-f-S идет не полно- стью. При отмывке соляной кислотой потери веса составляют 1 — 10%. Промытый продукт по составу близок к рассчитанному для FeSj и содержит в среднем из 14 анализов 52,4% серы и 4С,6% железа. Это отвечает составу FeSj Технологический выход пирита из FeS составляет в среднем 93%. [c.48]

    Известно несколько способов получения неактивного треххлористого фосфора [7, 8]. Так по методу Рекшинского треххлористый фосфор готовится путем сжигания красного фосфора в токе совершенно сухого хлора. Основные недостатки этого метода— очень низкий технологический выход (около 50%) и трудность проведения реакции, так как наряду с треххлористым фосфором образуются РС15 и Р0С1з. [c.91]

    Для придания необходимого направления реакции Гребе предлежал в реакционную колбу вводить немного треххлористого фосфора. Несколько отличный способ был предложен Михаэлисом. По этому методу получение треххлористого фосфора осуществляется Из желтого фосфора при пропускании тока сухого хлора, когда желтый фосфор находится в расплавленном состоянии. Возможность взрыва при синтезе и большие потери при возгонке красного фосфора основные недостатки этого метода. Из других способов получения РС1з следует упомянуть метод Б. Н. Лундина. Преимуществом этого метода является возможность получения треххлористого фосфора с более высокими технологическими выходами. [c.91]

    Считается, что в этой реакции сначала под действием ультрафиолетового света молекулы хлора расщепляются на атомы. Атом хлора отнимает от углеводородной молекулы один атом водорода, причем образуются хлористый водород и алкильный радикал. Алкильный радикал соединяется с двуокисью серы с образованием алкилсульфонового радикала, который реагирует с молекулой хлора, давая сульфохлорид и освобождая атом хлора. Квантовьи т выход ири технологическом сульфохлорировании составляет около 2000. [c.137]

    В описываемом случае схема автоматического регулирования температуры в реакторе работала с неполадками, однако при приеме смены на это не -выло обращено внимания. В 1 ч ночи температура циклогексана начала снижаться. На входе в реактор окисления температура снизилась оо 120 до 107 °С. К 1 ч 30 мин в средней части реактора температура снизилась со 147 до 138 °С. Чтобы не нарушать технологический режим, прекратили подачу конденсата на испарение в змеевики реактора. Затем отключили автоматический газоанализатор содержания кислорода в реакционных газах после реактора, тем самым исключили автоматическую отсечку подачи воздуха в реактор. В момент отключения газоанализатора концентрация кис.чорода в газах на выходе Т13 реактора составляла около 4,5%. Подача воздуха в реактор не была цре-тс ращена. К 2 ч температура снизилась до 128 °С. Для вывода реактора на нормальный режим увеличили подачу катализатора в реактор и уменьшили подачу циклогексана. Воздух же продолжал поступать в реактор. В 2 ч 30 мин, после включения подачи пара в змеевики реактора, температура в аппарате начала медленно повышаться и к моменту аварии достигла 132 °С (при падении температуры ниже 137—138 °С реакция окисления прекращается, и в случае подачи воздуха в реакторе образуется взрывоопасная парогазовая смесь). [c.92]

    Предварительный анализ химической концепции нового метода — это первый этап оформления технологического процесса. Если такой анализ не выявляет никаких принципиальных недостатков концепции, предпринимаются исследования в лабораторном и чет-вертьпромышленном масштабе. Цель их — исследование химических процессов, т. е. статики, кинетики и механизма процесса, определение достигаемых выходов, приблизительное установление оптимальных условий проведения основной реакции, испытание наносимых на оборудование покрытий и т. д. [c.343]

    Многие производства проектируют, имея лищь частичные сведения о рассматриваемых реакциях и используя приближенные формулы для расчета коэффициентов тепло- и массопередачи. Для того чтобы при этом гарантировать соответствующую работу данного промышленного агрегата, необходимо применять большие коэффициенты запаса. Но это приводит к чрезвычайно высоким капитальным затратам. Только получив более точные выражения, описывающие закономерности тепло- и массопередачи для оборудования заданных размеров, можно избежать излишеств. Еще более важен максимально полный сбор данных о рассматриваемых химических реакциях, в особенности о влиянии изменений условий работы на их скорость и состав продуктов. Основной тезис системотехники заключается в том, что можно так управлять работой технологического оборудования, чтобы при высокой средней производительности и низких капитальных затратах обеспечить получение продукта наилучшего качества с высокими выходами. Однако для расчета таких наивыгоднейших параметров нужно решить ряд многочисленных и трудных проблем. [c.13]

    На рис. 5.1 и 5.2 представлены фафические показатели, характеризующие процесс переработки бензиновой фракции 62-140 С на катализаторе СГ-ЗП. Анализ полученных данных свидетельствует о сложной взаимосвязи между технологическими параметрами процесса и глубиной протекания основных реакций (дегидрирования и дегидроизомеризации нафтеновых углеводородов и гидрокрекинга нормальных парафиновых углеводородов), что, в свою очередь, определяет выход стабильного бензина и его качество. Например, выход и антидетонационные свойства стабильного катализата при осуществлении процесса при температуре 420 и 460°С с объемными скоростями подачи сырья соответственно 2 и 5 час практически одинаково, в то время как выход ароматических углеводородов при темперагуре 460 С выще на 11% мае. Таким образом, регулируя параметры процесса и тем самым изменяя глубину протекания основных реакций процесса, можно в достаточно щироких пределах изменить качество получаемого катализата, в частности, содержатше ароматических углеводородов и октановое число. [c.127]

    Избирательность. Широкое применение каталитических процессов требует подбора катализаторов, избирательно ускоряющих процесс превращения сырья в желательном направлении. Например, крекинг углеводородов сопровождается реакциями дегидрогенизации, изомеризации, полимеризации, циклизации и др. Подбором катализатора и технологических параметров осуществляют процесс в нужном направлении с преимущественным выходом желаемых продуктов. Принцип избирательности используют при выборе алюмосиликатных катализаторов различного строения и структуры, учитывая при этом относительное значение выходов и качеств целевых продуктов. Например, для превращения низкокипящего термически стабильного сырья прил1еняют высокоактивные синтетические катализаторы раз- чожение же тяжелых смолистых дистиллятов осуществляют на менее активных катализаторах. Некоторые природные катализаторы [c.15]

    Настоящая глава посвящена рассмотрению вопросов, связанных с выбором оптимального типа реактора с точки зрения химической кинетики конкретной реакции. Будет показано, почему один тип реактора обеспечивающий больщой выход или лучшее качество продукта, оказывается предпочтительнее другого. Эти химические факгоры могут существенно влиять на издержки производства. Имеются и другие не менее важные факторы, к которым относятся капиталовложения и эксплуатационные расходы, связанные с оплатой рабочей силы, расходом электроэнергии, пара и т. п. Еще одним существенным фактором, не поддающимся денежному выражению, является охрана труда. Так, нри реализации некоторых реакций нитрования, используемых в производстве взрывчатых веществ, технологически выгоднее применять реактор вытеснения, однако реактор смешения лучше удовлетворяет требованию безопасности процесса . [c.106]

    Технологическая схема процесса приведена на рис. 25. Чтобы процесс был непрерывным, на установке применяют два реактора. Сырье подогревается сначала в теплообменниках 3, а затем в печи 1 до температуры реакции и в паровой фазе подается в реактор 2. В реакторе 2 происходит в это время регенерация катализатора. Продукты реакции (изомеризат, полимеры и газ) выходят иг реактора 2 и поступают в колонну 4. Полимеры удаляются с низг колонны, а изомеризат и газ с верха колонны поступают в сепара тор 5 и затем в депропанизатор 6, откуда выходит готовый продукт Процессы при низких температурах. Для повышения октаново го числа бензинов термического крекинга перспективными катали заторами оказались синтетические цеолиты типа 5А [2]. В йх при [c.178]

    Основными показателями технологического 1 режима печи, за которыми должен следить оператор во время работы, являются температура сырья на входе в печь и выходе из печи, температура дымовых газов на перевале и расход сырья в ггечь. Температура на выхояе сырья из печи регулируется в зависимости от температуры в зоне реакции Постоянство тем- [c.154]

    Процессы теплопередачи могут существовать как в виде самостоятельных технологических операций, например, нагревание или охлаждение реакционной массы до заданной тсмпера-т/ры, так и протекать одновременно с другими процессами (при- vepoM может служить отвод тепла экзотермической реакции в изотермическом процессе). Процесс теплопередачи органи.зует-С1 с различными целями например, для нагревания или охлаждения реагентов до температуры, при которой основная химическая реакция протекает с требуемой скоростью или достигается наибольший выход целевого продукта, для изменения arpe-Г.1ТН0Г0 состояния и 1и физико-химических свойств веи ества. [c.16]

    С целью повышения эффективности производства стремятся интенсифицировать химико-технологические процессы либо тра-дицпоиными методами, изменяя в нужном направлении факторы, влияющие на скорость процесса и выход продуктов реакции, либо применяя новые, нетрадпционные источники энергии или способы организации технологических процессов. [c.97]

    Особенность совмещенных процессов состоит в том, что, помимо фазового равновесия, необходимо рассматривать и химическое равновесие. А это значит, что необходимо исследовать кинетику возможных химических реакций в условиях, создаваемых при ректификации. Следует заметить, что при медленных химических реакциях и при низких тепловых эффектах процесс практически не отличается от обычной ректификации. Имеющееся отличие будет сказываться лишь при большом времени пребывания реагентов и проявляться в накоплении продуктов побочных реакций в продуктах разделения. При наличии же больших тепловых эффектов и скоростей реакций могут быть совершенно неожиданные результаты. Так, при экзотермической реакции с большим тепловым эффектом возможно полное испарение потока жидкости в зоне реакции и, наоборот, при эндотермической — захолаживание жидкости и конденсация парового потока. Поэтому при попытке совмещения ректификации и реакции важнейшей задачей является обеспечение условий нормального функционирования процесса, т. е. его устойчивости и управляемости. Отсюда следует, что хеморектификация протекает в более жестких границах изменения основных технологических параметров. Выход за допустимые границы (например, по теплоотводу) может привести к взрыву в случае сильно экзотермической реакции и останову процесса массообмена между потоками пара и жидкости в случае эндотермической реакции. Интересным моментом является то, что возникает проблема рационального использования выделяемого тепла внутри схемы, например, на образование парового потока с целью снижения энергетических затрат на ведение процесса. [c.365]

    Изучение перенапряжения при электролитическом выделении водорода представляет значительный интерес для теории и практики. Найденные при этом закономерности могут служить в качестве исходных данных для обобщений в области электрохимической кинетики. Величина водородного перенапряжения и зависимость его от различных факторов учитываются при создании технологических электрохимических процессов. Например, при электролизе водных растворов солей цинка на катоде могут протекать реакции разряда тнов Zn (fzn +,zn =—0,76 В) и ионов Н (в нейтральном растворе Фн+.Hj = —0,41 В). Вследствие высокого перенапряжения водорода на цинке потенциал его выделения сдвигается в сторону более отрицательных значений, б"лагодаря чему возможно катодное осаждение металла с выходом по току 90—95%. [c.513]

    Для каталитического крекинга характерно постоянство выхода продуктов при заданной конверсии сырья независимо от сочетаний значений массовой скорости подачи сырья и кратности циркуляции катализатора, при которых она была достигнута, если нет ограничений по мощности регенератора и десорбера. Поэтому в качестве определяющих параметров технологического режима крекинга рассматривают конверсию сырья, парциальное давление паров сырья, температуру реакции, время контакта катализатора с сырьем для ли4л--реактора, полноту регенерации катализатора. В свою очередь на промышленных установках эти параметры связаны с производительностью по сырью и температурой его предварительного подогрева, температурой регенерации, расходом водяного пара, подаваемого на смешение с сырьем в реактор, и другими параметрами. [c.109]


Смотреть страницы где упоминается термин Технологический выход реакции: [c.319]    [c.187]    [c.128]   
Теория химических процессов основного органического и нефтехимического синтеза Издание 2 (1984) -- [ c.14 ]




ПОИСК





Смотрите так же термины и статьи:

Выход технологический



© 2025 chem21.info Реклама на сайте