Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Холодильник коэффициент теплоотдачи

Рис. 90. График для определении коэффициента теплоотдачи onoбoдFloй конвекцией от стеики трубы к бодс в погруженных холодильниках ири диаметре Рис. 90. График для <a href="/info/712879">определении коэффициента теплоотдачи</a> onoбoдFloй конвекцией от стеики трубы к бодс в погруженных холодильниках ири диаметре

    При конденсации паров с помощью водяного охлаждения на границе стенка—вода существует большое сопротивление процессу передачи тепла, поэтому при конструировании аппаратов необходимо стремиться к тому, чтобы увеличить коэффициент теплоотдачи от поверхности, омываемой водой. В конденсаторах закрытого типа это достигается пропусканием воды через трубки. Оптимальная скорость воды в трубках равна 1,5 м/с. Среднее значение общего коэффициента теплопередачи для конденсаторов, установленных на колоннах, которые разделяют легкие углеводородные смеси, составляет 148,8 ккал/(м2.ч-°С). Для предварительного подогрева сырья в качестве теплоносителя может применяться пар или поток горячих углеводородов, например с низа колонны. Для пара общий коэффициент теплопередачи составляет около 89,3 ккал/(м2-ч-°С), а для углеводородов — 74,4 ккал/(м2-ч-°С). Такое же значение коэффициента теплопередачи можно принимать при расчете холодильников. Если в качестве теплоносителя применяются углеводороды, то оптимальная линейная скорость потока в трубках теплообменника находится н пределах 1,8—2,4 м/с. [c.150]

    При поперечном обтекании газом пучка гладких труб, что имеет место в основной массе кожухотрубных и радиаторных холодильников, коэффициент теплоотдачи от газа к стенке или от стенки к охлаждающему воздуху может быть определен по формуле ЦКТИ, которая применима в области изменения Re = = 2.10" 60.10 . [c.328]

    Алгоритм расчета кипятильника предполагает возможность определения поверхности теплообмена как горизонтального, так и вертикального аппаратов при условии, что кипение жидкости может происходить в трубном и межтрубном пространствах. В основе алгоритма лежат те же положения, что и при расчете подогревателя — холодильника. Особенность заключается в определении коэффициентов теплоотдачи. [c.385]

    Коэффициент теплоотдачи для погружных холодильников. Коэффициент теплоотдачи от стенки трубы к охлаждающей воде рассчитывают по формуле [c.452]

    Холодильник. Охлаждение паровоздушной смеси после вентилятора производят обычно в трубчатых холодильниках. Коэффициент теплоотдачи от паровоздушной смеси к стенке невелик. Поэтому с этой стороны часто увеличивают число ходов холодильника. Иногда число ходов увеличивают и со стороны охлаждающей воды. Даже нри наличии многоходовых холодильников величина поверхности теплообмена в большинстве случаев достаточно велика (около 200 и более). Обычно охлаждающую воду подают в трубы, а паровоздушную смесь в межтрубное пространство. [c.433]


    Применение пенных аппаратов во многих случаях позволяет резко сократить подачу жидкости на питание аппарата по сравнению с насадочными башнями, в которых плотность орошения обусловлена необходимостью смачивания насадки. При проведении процессов экзотермической абсорбции весьма эффективна установка холодильников внутри аппарата в зоне пены (см., например, рис. 17). В этих холодильниках коэффициенты теплоотдачи от пены к воде повышаются в 5—10 раз по сравнению с теплоотдачей от спокойной жидкости к воде [2], общий коэффициент теплопередачи достигает 2000 ккал/м -час град. Следовательно, уменьшается площадь теплообмена по сравнению с внешними теплообменниками и, главное, сокращается подача жидкости на полку аппарата. Экономия энергии на подачу жидкости в пенные аппараты по сравнению с насадочными башнями может компенсировать увеличение затрат энергии на преодоление гидравлического сопротивления аппарата потоку газа. [c.18]

    Пример 16. Требуется определить коэффициент теплоотдачи трихлорэтилен к стенкам трубок холодильника вертикальной конструкции, если задано охлаждение от 85 до 30° С. Трихлорэтилен протекает вдоль внешней поверхности трубок холодильника. Охлаждающая вода, средняя температура которой равна 28,5° С, течет по трубкам. Расход трихлорэтилена 0,64 л/сек. Число трубок принимаете  [c.73]

    Основным недостатком этих холодильников является невысокий коэффициент теплоотдачи вследствие малой скорости протекающей воды и большой расход металла на единицу поверхности охлаждения. Преимущество этих холодильников заключается в большом запасе воды. [c.89]

    Коэффициент теплоотдачи а для погружных холодильников может быть найден графически (рис. 1-20). Значения поправочного коэффициента В в формуле (VI. 69) определяются по графику, приведенному на рис. 1-21. Ниже приведены средние значения коэффициентов теплопередачи для погружных конденсаторов и холодильников  [c.452]

    В воздушных холодильниках газовых сред коэффициент теплоотдачи примерно неизменен по поверхности и поэтому зависимости q = f(l) и Q ==/(/) не имеют характерных экстремальных участков. Этому способствует и применение многоходовых АВО и равномерное распределение потоков внутри теплообмен-ных секций. [c.155]

    Коэффициент теплоотдачи аг со стороны кипящего пропана. Сжиженный пропан, вследствие снижения его давления до 0,15 МПа непосредственно перед холодильником (испарителем), испаряется в корпусе аппарата при температуре /з = —30 С. При этом он отнимает тепло у охлаждаемого абсорбента, проходящего в трубном пучке. [c.108]

    Расчет показывает (см. табл. 4.16), что в трубном пучке холодильника-конденсатора идет процесс частичной конденсации исходного газа, причем паросодержание двухфазного потока (или массовая доля пара) изменяется от е =0,322 до е = 0,179. В этом случае средний коэффициент теплоотдачи (со стороны конденсирующегося газа) в трубном пространстве рассчитывается по формуле [38. с. 145]  [c.149]

    Расчет конденсаторов-холодильников имеет свои особенности, обусловленные характером изменения температур и коэффициентов теплоотдачи вдоль поверхности теплообмена. [c.186]

    Так как выбор рабочих скоростей потока газов на 2- и 3-м слоях проведен из условия достижения максимальных коэффициентов теплоотдачи от слоя к новерхности холодильников, расчет Ову проводится по уравнению (11.14). [c.282]

    Коэффициент теплоотдачи a , от слоя к новерхности холодильника  [c.282]

    Особое внимание было уделено исследованию тепловых характеристик вихревых теплообменников-холодильников (2) и (3) [74], так как от эффективности их работы зависит остаточное содержание углеводородных компонентов в газе, направляемом на дожиг ТКР. На трехтрубном аппарате (2) при использовании энергии давления лишь для закрутки газового потока были получены значения коэффициентов теплоотдачи со стороны закрученного потока в диапазоне 97-409 Вт (м К) при изменении исходного давления от 0,66 до 3,82 МПа. Уровень снижения давления не превышал 10%, причем в межтрубное пространство аппарата подавали охлажденный газ после теплообменника (3). При работе на контактном газе (Р а 0,6 МПа) содержание фракции С5 понижалось в 1,5-2 раза, а в аппарат (3) направляли газ, практически не содержащий жидкой фазы. [c.139]

    Существуют также программы расчета на ЭВМ аппаратов воздушного охлаждения при их применении в качестве холодильников и конденсаторов. Результатом счета являются характеристика и число аппаратов, угол установки лопастей и мощность двигателя вентиляторов, коэффициенты теплоотдачи и теплопередачи, расчетное гидравлическое сопротивление. [c.115]

    Конденсаторы и холодильники воздушного охлаждения состоят из двух основных частей поверхности охлаждения и системы подачи воздуха, включающей вентилятор и регулирующее устройство. Поверхность охлаждения компонуют из оребренных труб, собранных в секции и развальцованных в решетках, к которым присоединены крышки. Оребрение увеличивает (в 5—20 раз) наружную поверхность трубы, компенсируя недостаточную теплоотдачу со стороны воздуха, улучшая теплообмен. Для улучшения коэффициента теплоотдачи воздух увлажняют. [c.78]


    В связи с различием в температурном напоре и коэффициенте теплоотдачи расчет поверхности конденсатора-холодильника необходимо вести для каждой зоны в отдельности, используя для этого общее уравнение теплопередачи [c.609]

    При использовании практических данных по коэффициентам теплоотдачи для конденсаторов-холодильников поверхность теплообмена может быть рассчитана без ее подразделения на отдельные зоны по общему уравнению теплопередачи, однако такой расчет менее точен. [c.610]

    В погружных холодильниках при обтекании труб водой с малой скоростью коэффициент теплоотдачи определяют из уравнения [c.555]

    Теплопередача путем конвекции происходит при передаче тепла от твердой фазы к жидкой или, наоборот, от подвижной фазы к твердой, например при охлаждении паров и газов в холодильнике. Конвекция может быть основана либо только на естественном движении подвижной фазы, возникающем в результате изменения плотности с температурой (естественная конвекция), либо она может быть ускорена механическим способом, например перемешиванием или ускоренным протеканием газа через трубки (принудительная конвекция). Даже при очень интенсивном движении жидкости или газа в непосредственной близости от стенки остается очень тонкий неподвижный слой, в котором теплопередача осуществляется не в результате конвекции, а за счет теплопроводности. Этот слой создает наибольшее сопротивление теплопередаче между обеими фазами. Коэффициенты теплопроводности этого слоя и подвижной фазы включены в коэффициент теплоотдачи а  [c.83]

    В оросительных холодильниках при стекании воды пленкой по наружной поверхности труб коэффициент теплоотдачи вычисляют по уравнению [c.555]

    Для ограничения длины холодильника увеличивают число труб, вследствие чего в холодильнике, однозаходном по воде, понижается ее скорость. Величина скорости газа может быть увеличена уменьшением расстояния между перегородками. Следует, однако, заметить, что повышение скорости потока в поперечном направлении сопровождается большими потерями давления, чем при повышении ее вдоль труб, причем более благоприятный коэффициент теплоотдачи при поперечном омывании трубного пучка компенсирует это различие только частично. [c.479]

    В холодильниках высокого давления коэффициенты теплоотдачи от газа к трубе и от трубы к воде оказываются величинами одного порядка. При этом увеличение скорости воды намного снижает тепловое сопротивление холодильника и существенно повышает эффективность его действия. [c.485]

Рис. У1-20. График для определения коэффициента теплоотдачи в погружных холодильниках в зависимости от коэффициента теплоотдачи 02 и средней температуры охлаждающей воды Рис. У1-20. График для <a href="/info/712879">определения коэффициента теплоотдачи</a> в <a href="/info/682003">погружных холодильниках</a> в зависимости от <a href="/info/21337">коэффициента теплоотдачи</a> 02 и <a href="/info/14207">средней температуры</a> охлаждающей воды
    Формула (1Х.41) соответствует условию, что поток газа перпендикулярен оси труб, т. е. что угол атаки = 90°. В кожухотрубных холодильниках обтекание трубного пучка происходит под углом атаки, который зависит от расстояний между поперечными перегородками и расположения в них отверстий (его считают равным углу между прямой, соединяющей средние точки отверстий двух смежных поперечных перегородок, и осью трубного пучка). Изменение коэффициента теплоотдачи при угле атаки < 90° учитывается введением поправочного коэффициента е . В этом случае коэффициент теплоотдачи равен [c.504]

    Перегонка с инертным газом. При перегонке смесей вместо водяного пара иногда используют инертные газы, например азот, двуокись углерода и др. Перегонка в токе неконденсирующегося инертного газа позволяет более значительно снизить температуру испарения разделяемой смеси, чем при перегонке в токе водяного пара, где это снижение ограничено температурой его конденсации. Вместе с тем, присутствие инертного газа в парах, поднимающихся из куба, приводит к резкому уменьшению коэффициента теплоотдачи в конденсаторе-холодильнике и соответственно — к значительному возрастанию поверхности теплообмена. Кроме того, конденсация парогазовых смесей часто сопровождается туманообразованием. Это весьма затрудняет разделение смесей и вызывает заметный унос конечного продукта с инертным газом. [c.481]

    Коэффициент теплоотдачи для оросительных холодильников. Применительно к оросительным холодильникам основное уравнение для расчета коэффициента теплоотдачи имеет вид [c.450]

    Абсорбция с предварительным насыщением тощего абсорбента. Анализ, распределения температур по высоте абсорберов на различных установках показал, что интенсивность нагрева абсорбента больше в верхней. и нижней частях аппарата, так как основное количество метана и этана поглощается вверху колонны, а на нижних тарелках происходит растворение бутанов и пентанов. Поэтому целесообразно максимальное количество тепла процесса растворения снять в промежуточных холодильниках, установленных в верху и в низу абсорбера. Однако схемы с промежуточными холодильниками имеют ряд недостатков наличие глухих тарелок в абсорбере, сложность точного выбора места ввода охлажденного абсорбента, низкие коэффициенты теплоотдачи. [c.217]

    На рис. V1-16, а и б приведены зависимости коэффициента теплоотдачи авн от скорости движения охлаждаемого потока в трубах. Из графиков на рисунке хорошо видно, что с увеличением скорости UBH коэффициент теплоотдачи повышается, а интенсивность увеличения авн определяется теплофизическими свойствами газа. С увеличением давления газа авн резко возрастает. Так, при скорости движения потока газа Квн = 10 м/с коэффициент теплоотдачи СОг для давления 0,1 МПа и средней температуры 50 °С составляет 54Bт/(м K), при повышении давления до 1,0 МПа величина вн возрастает до 350 Вт/(м К), т. е. почти в 7 раз. В табл. VI-7 представлены результаты испытаний промежуточного (АВО-1) и байпасного (АВО-2) холодильников природного газа. [c.153]

    В контактных аппаратах с неподвижным катализатором Нельзя применять водяные холодильники, так как вследствие весьма низкой теплопроводности пористых гранул ванадиевого катализатора [порядка 0,57 ккал м-град -ч) у теплообменных поверхностей происходит резкое-падение температуры ниже температуры зажигания катализатора. Кроме того, на холодных поверхностях теплообменных труб может конденсироваться серная кислота, что вызывает быструю их коррозию и порчу контактной массы, находящейся в зоне теплообменников. Эффективная теплопроводность кипящего с лоя достигает 15 ООО ккал/(д1 грй 9.ч) [181, а коэффициенты теплоотдачи столь велики [16, 19], что становится возможным применение водяных холодильников (см. главу IV). При этом не происходит конденсации серной кислоты на холодных поверхностях, омываемых кипящим слоем при снижении температуры до 390° С, т. е. ниже рабочих температур катализа [20]. Теплопередача от кипящего слоя к воде, протекающей в трубах водяного холодильника, происходит много интенсивнее, чем в газовых теплообменниках, которые устанавливают между слоями аппаратов с неподвижным катализатором коэффициент теплопередачи возрастает в среднем в 15 раз. Движущая сила процесса теплопередачи Ai (разность температур) также увеличивается примерно в 2 райа. Таким образом, площадь теплообмена Р, вычисляемая по формуле [c.144]

    Коэффициент теплопередачи определяем по формуле (VI. 38). Расчет авзв —коэффициента теплоотдачи от взвешенного слоя к поверхности холодильника — производят по формуле (VI. 39) для режима высокой турбулентности, т. е. [c.144]

    Холодильники ступеней низкого давления. Кожухотрубные холодильники конструктивно представляют собой пучок труб, зазвальцованных в трубных досках и заключенных в общий кожух. Лереход тепла от газа к трубе встречает значительно большее термическое сопротивление, чем переход тепла от трубы к охлаждающей воде, поэтому в холодильниках низкого давления для снижения полного термического сопротивления воду направляют по трубам, а газ — между ними, т. е. со стороны большей поверхности. С той же целью применяют поперечный ток газа относительно трубного пучка, при котором достигается более высокий коэффициент теплоотдачи. Для осуществления поперечного тока в межтрубной полости устанавливают перегородки. Направление воды по трубам, а не между ними имеет еще то преимущество, что в этом случае не представляет трудности механическая чистка труб от отложений, которые при жесткой воде оседают на стенках плотным слоем в виде накипи, наружная же поверхность труб в многотрубном пучке для механической чистки почти недоступна. [c.474]

    Элементные холодильники, как и кожухотрубные, изготовляются вертикальными и горизонтальными. Выполняют их, как правило, из оребренных труб с насаженными или накатанными ребрами. Достигаемая при этом поверхность соприкосновения с газом компенсирует недостаточность коэффициента теплоотдачи со стороны газа и приводит к компактным конструкциям теылопередающих элементов. [c.479]

    Тепловой расчет выполняют по методике, описанной в расчете аппаратов с неподвижными слоями катализатора. Коэффициент теплоотдачи от взвешенного слоя к теплообменной поверхности в среднем в 10 раз выше, чем от неподвижного слоя. Поскольку для условий кипящего слоя применимы водяные холодильники, величина теплообменной поверхности может быть снижена в 10 раз по срав 1е-нию с газовыми теплообменниками. [c.253]

    Из приведенной на рис. 4.24 схемы видно, что регулируемое количество уловленного в циклоне дисперсного материала поступает в холодильник-теплообменник с КС, состоящий из нескольких секций, последовательно включенных по материалу. В нем создаются оптимальные по теплообмену скорости псевдоожиження и теплота материала передается рабочему телу, циркулирующему по погруженным в слой змеевикам. Использование мелкого материала позволяет получить высокие коэффициенты теплоотдачи [свыше 500 Вт/(м2-К)]. Основная масса охлажденного инерта возвращается в нижнюю часть топки, часть его выводится из цикла. Таким образом отводится 85 % золы топлива остальные 15 % удаляются в виде летучей золы из электрофильтров. В целях регулирования часть инерта после циклона возвращается в топку, минуя теплообменник. [c.239]

    Изотермичность КСК является результатом его чрезвычайно высокой теплопроводности, в тысячи раз превышающей теплопроводность неподвижного слоя (см. гл. 2), а теплопроводность обусловлена перемешиванием твердых частиц (см. гл. 1). Вследствие высокой теплопроводности КСК в него можно устанавливать трубы парового котла или водяные холодильники, что недопустимо в условиях неподвижного слоя, так как приводит к переохлаждению прилегающих к трубам зерен катализатора и последующему затуханию реактора. Коэффициенты теплоотдачи от КСК к теплообменной поверхности могут быть в 10—20 раз выше, чем от неподвижного слоя или от газового потока, в результате сильно уменьшаются поверхности теплообменников в КСК Вследствие высокой теплопроводности КСК и благодаря применению мелкозернистого катализатора снимаются локальные перегревы и переохлаждения зерен, свойственные неподвижному слою. В неподвижном слое нерационально применять катализатор с размером зерен (таблеток) менее 4—5 мм из-за резкого возрастания гидравлического сопротивления АРс. В результате наблюдается внутридиф-фузионное торможение в порах зерен катализатора, и степень использования внутренней поверхности зерен в ряде каталитических процессов составляет 0,5 и ниже. В КСК АРс не зависит от размера зерна, поэтому целесообразно применять зерна такого размера, при котором достигается максимальная степень превращения. [c.262]

    Охлаждение воздухом. Воздух в качестве охлаждающего агента, как и воду, широко используют в химической технологии. По сравнению с водой воздух более доступен и, несмотря на то, что он обладает значительно меньшими значениями коэффициентов теплоотдачи и объемной теплоемкости (это, в свою очередь, определяет значительно большие потребные поверхности теплообмена и расход теплоносителя), в современной технологии наблюдается тенденция к замене воды как охлаждающего агента воздухом. Помимо этого воздух не загряняет поверхность теплоотдачи отложениями, не корродирует теплообменную аппаратуру, что положительно сказывается на увеличении срока службы воздушных холодильников. [c.331]


Смотреть страницы где упоминается термин Холодильник коэффициент теплоотдачи: [c.415]    [c.89]    [c.94]    [c.281]    [c.408]    [c.393]    [c.123]    [c.102]    [c.573]   
Справочник инженера - химика том первый (1969) -- [ c.209 , c.210 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициенты теплоотдачи

Холодильник



© 2025 chem21.info Реклама на сайте