Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Детектор по оптическому поглощению

    В настоящее время эти проблемы решены различными способами. Повышены интенсивность источников излучения и чувствительность детекторов. По существу, эти части установок для кругового дихроизма могут быть одинаковыми с таковыми в спектро-поляриметрах для измерений дисперсии оптического вращения. В связи с тем, что неизвестно такое дихроичное вещество, для которого один из коэффициентов поглощения е или бг был бы очень мал, принципиальным является узел прибора для формирования лучей с круговой поляризацией. Для этого используется так называемая четвертьволновая пластинка. [c.197]


    Существенный недостаток количественных методов анализа тонкослойных хроматограмм, основанных на измерении пропускания света, был связан с нелинейной зависимостью сигнала оптического детектора от количества вещества в хроматографическом пятне. Эта нелинейность обусловлена специфическим законом прохождения света в рассеивающей среде, описываемым уравнением Кубелки — Мунка, и неоднородностью пластины по толщине слоя адсорбента. Последнюю можно учесть, измеряя оптические свойства подложки непосредственно в хроматографическом пятне. Использование двухволнового метода спектрофотометрического детектирования, когда излучение одной волны Л поглощается и веществом, и адсорбентом, а другой волны Лг — только адсорбентом, позволяет выделить сигнал, связанный с поглощением излучения только анализируемым веществом. Дальнейшая обработка сигнала детектора в соответствии с уравнением Кубелки — Мунка позволяет линеаризовать зависимость оптического сигнала от количества вещества в ТСХ. Поглощение света адсорбентом может быть учтено также при спектрофотометрическом сканировании пластины на просвет и отражение. Эти принципы реализованы в лучших современных зарубежных денситометрах — флуориметрах. Менее точным, но более простым решением является линеаризация зависимости сигнал — вещество с помощью двойного логарифмирования (с использованием ЭВМ). В результате этих усовершенствований воспроизводимость результатов в современной количественной ВЭТСХ приближается к 1%. Использование двухкоординатного сканирования в случае эллипсовидных пятен (двумерное размывание зон в ТСХ) и многошагового сканирования пятен неправильной формы (дву- [c.370]

    После разделения зон методом ИТФ в стационарном состоянии ни длина зон, ни концентрация в зонах не меняются. Если, наряду с этим, существует уверенность, что зоны движутся с постоянной скоростью, имеющееся количество вещества можно оценить, исходя из длины зоны. При этом качественный состав зоны можно оценить по падению потенциала в зоне, количеству выделяющегося тепла, электрическому сопротивлению-или по оптическому поглощению. Установлено, что при постоянной скорости миграции зон через детектор в единицу времени (изотахофорез при постоянном токе) проходит одинаковое число зарядов. В этом случае напряжение в капилляре постепенно-увеличивается пропорционально миграции зоны, а электролит,, содержащий ведущий ион, который вначале заполняет все капиллярное пространство, замещается на мигрирующие зоны образца. После этого ионы замыкающего электролита движутся-с максимальным электрическим сопротивлением, и при этом выделяется максимальное количество джоулева тепла. В ходе этого процесса электрическое сопротивление является величиной,, качественно характеризующей ионы электролита данного состава. Чем ниже электрофоретическая подвижность, тем выше термический сигнал, т. е. тем выше падение потенциала в данной зоне. [c.314]


    Для построения кривой поглощения меняют длины волн и при каждой длине волны компенсируют поглощение чистого растворителя, так как оно также зависит от частоты падающего света. При проведении измерений в большом диапазоне длин волн и с большой частотой измерений построение кривой требует значительных затрат времени. Этого можно избежать, применяя двухлучевые спектрофотометры, в которых монохроматический свет делится на два потока одинаковой интенсивности. Один из них проходит через раствор сравнения, другой — через анализируемый раствор, после чего световые потоки попадают на два не связанных друг с другом детектора. Возникает сигнал разбаланса, который подается на сервомотор, управляющий движением оптического клина. Клин перемешается на пути светового потока, падающего на раствор [c.359]

    Лучшие образцы современных УФ-спектрофотометров работают в области от 185 до 850 нм. Нижний предел определяется качеством оптической системы и интенсивностью источника излучения. Для снятия спектров ниже 200 нм оптика прибора должна быть изготовлена из специального кварца, а монохроматор при работе продувают сухим азотом, чтобы устранить сильное поглощение кислорода и паров воды в этой области. Длинноволновая граница прибора определяется чувствительностью детектора. В некоторых приборах ставят дополнительный сменный детектор (обычно фотосопротивление), что позволяет использовать такой спектрофотометр в ближней инфракрасной области (до [c.15]

    Фотометрическая оптическая система нуля. Для измерения поглощения образца должны быть сопоставлены интенсивности пучков, прошедших через образец и сравнительную кювету. Два пучка после прерывателя попеременно подаются на детектор (фотоумножитель) и усиливаются. Если интенсивности одинаковы, то выходной сигнал после усилителя отсутствует. При любом различии в интенсивностях появляется выходной сигнал, имеющий частоту прерывателя. Этот сигнал затем усиливается и приводит в действие аттенюатор, который вводится в сравнительный луч или выводится из него. Аттенюатор представляет собой тонкую плоскую гребенку, расстояние между зубцами которой линейно увеличивается с расстоянием. Доля открытого пространства в гребенке определяет степень пропускания луча, которую можно линейно изменять в очень узких пределах. В зависимости от фазы сигнала [c.224]

    Фотометр — оптическая система нуля. Для измерения поглощения образца нужно сопоставить интенсивности сравнительного пучка и луча, прошедшего через образец (рабочего пучка). Пучок сравнения и рабочий пучок проходят через аттенюатор и гребенку соответственно и отражаются системой зеркал на вращающееся секторное зеркало, которое попеременно отражает или пропускает пучки на монохроматическую щель. После прерывателя пучки попадают на детектор (термопара) и усиливаются. При одинаковой [c.231]

    Детекторная система, служащая для регистрации сигнала, поступающего из камеры, состоит да оптического диспергирующего устройства, например монохроматора или фильтра, выделяющего резонансную линию элемента, и детектора излучения, например фотоумножителя, а также системы индикации для снятия величины поглощения. [c.50]

    Традиционный УФ-детектор с перестраиваемой длиной волны для ВЭЖХ по существу представляет собой высокочувствительный УФ-спек-трометр с проточной микроячейкой, который регистрирует оптическую плотность раствора при данной длине волны В большинстве детекторов часть излучения направляется на второй фотодиод, расположенный в канале сравнения, для компенсации флуктуаций в работе лампы. Для повышения чувствительности измерений монохроматор можно запрофзм-мировать на автоматическое изменение длины волны в ходе анализа Однако во всех случаях в данный момент времени измерение поглощения осуществляется только в одной точке спектра. На практике часто бывает необходимо проводить измерения на различных длинах волн одновременно, когда определяемые соединения плохо разделяются хроматографически Высокочувствительная запись спектров стала реальностью с появлением детекторов на диодной матрице В таких детекторах мат >ица фотодиодов (более двухсот) постоянно регистрирует сигналы в ультрафиолетовой и видимой частях спектра (УФ-В-детекгоры), обеспечивая запись в режиме сканирования. Данные, полученные одновременно на различных длинах волн, обрабатываются с помощью компьютеров, которые вьщеляют сигнал на оптимальной длине волны, вычитают фон и осуществляют другие операции. Применение детекторов на диодной матрице обеспечивает получение аналитических данных с гораздо большей степенью достоверности [c.273]

    КЛИН луча сравнения до тех пор, пока разность сигналов не уменьшится до нуля. Передвижение клина сопровождается одновременным и пропорциональным перемещением пера самописца, так что по мере развертывания спектра вращением решетки и барабана самописца перо автоматически вычерчивает кривую процента пропускания в зависимости от волнового числа. Это фотометрическое устройство, которое измеряет процент пропускания образца с помощью уравнивания интенсивностей луча сравнения и луча, проходящего через образец, работает по принципу, который известен под названием двухлучевого оптического нулевого принципа. Влияние поглощения атмосферы и растворителя, случайные изменения в излучении источника и чувствительности детектора, отклонения от линейности усилителя почти совершенно не отражаются на записи, так как они одинаковы для обоих лучей. [c.118]


    Имеется возможность, например, по окончании хроматографического процесса получить на дисплее или на ленте самописца в изометрической проекции трехмерную картину элюции в координатах оптической плотности, времени и длины волны. Более подробные сведения об устройстве и перспективах использования таких детекторов для целей хроматографии можно найти в обзорной статье IFell et al.— J. liromatogr., 1983, 273, p. 3—17]. При исследовании белков II нуклеиновых кислот с их простыми, лишенными индивидуальных особенностей УФ-сиектрами поглощения особой нужды в этих сложных п дорогостоящих приборах, по-впдимому, нет. [c.101]

    Спектрометр ЭПР, возможная схема которого изображена на рис. 1-2, б, представляет собой устройство для обнаружения магнитных дипольных переходов. На рис. 1-2, а для сравнения показана схема оптического спектрометра, из которой можно усмотреть аналогию в функциях некоторых элементов этих двух измерительных устройств. В обоих случаях монохроматическое электромагнитное излучение подают на образец и наблюдают за изменениями интенсивности излучения, прошедшего через образец с помощью подходящего детектора. Поглощение будет происходить только в том случае, когда энергия кванта падающего излучения равна расстоянию между уровнями энергии. Необходимость статического магнитного поля — отличительная черта магнитных дипольных переходов . В отсутствие магнит- [c.10]

    Линин поглощения будут наблюдаться тогда, когда расстояние между энергетическими уровнями станет равным энергии /гv падающих на образец микроволновых фотонов. Поглощение этих фотонов образцом на рис. 1-2, б проявляется в виде изменения тока детектора. Прямое детектирование сигнала поглощения (рис. 1-2, б) возможно лишь для образцов с высокими концентрациями неспаренных электронов. В широком диапазоне частот сигнал сопровождается шумами, и его детектирование затрудняется. В оптических спектрометрах отношение сигнал/шум можно увеличить путем модуляции светового пучка определенной частотой. При этом для детектирования можно воспользоваться узкополосным усилителем. Следовательно, [c.30]

    Исследование начального энергетического распределения по крайней мере требует, чтобы межмолекулярные столкновения не приводили к перераспределению энергии между модами. Для этого необходимы очень низкие давления газа, и работы обсуждаемого типа, как правило, ограничиваются газофазными системами. Еще лучший путь исключения столкновений молекул дают свободные от столкновений молекулярные пучки. Одной из важных методик, использующих молекулярные пучки, является времяпролетная спектроскопия фотофрагментов. Определение времени, которое требуется фрагментам фотодиссоциации, чтобы достигнуть детектора, помещенного на удаленном конце пролетной трубки, позволяет установить скорость поступательного движения и, следовательно, энергию фрагментов. Тогда разность между энергией кванта света и энергией диссоциации молекулы показывает распределение энергии фрагментов между поступательным движением и внутренними модами. В ряде случаев для определенного фрагмента появляется несколько пиков, обычно представляющих различные образующиеся колебательные уровни, а иногда указывающих, что образовалось более одного электронно-возбужденного состояния. Ширины отдельных пиков дают меру вращательного распределения фрагментов. Методику можно развить, если обеспечить передвижение детекторной части относительно входящего молекулярного пучка с целью получения важной информации об угловом распределении для процесса фрагментации. Подробные данные о вращательном распределении фрагментов обычно могут быть получены только с помощью спектроскопии высокого временного разрушения. Оптическое поглощение, фотоионизация и КАСКР, как описано в разд. 7.4, нашли применение в этом контексте. [c.206]

    Абсорбционный метод по окраске стекол и кристаллов. Стеклянные детекторы на основе силикатных и метафосфатных стекол с добавками серебра, марганца, никеля, ванадия, железа, кобальта и др., окрашивающиеся или теряющие окраску в процессе облучения, нашли наиболее широкое применение благодаря высокой чувствительности, обеспечивающей возможность определения широкого диапазона доз линейной зависимости оптического поглощения от дозы излучения стабильности наведенных дефектов и хорошей воспроизводимости результатов возможности использования стандартной аппаратуры для измерения наведенной окраски. [c.237]

    Максимум оптического поглощения метафосфатных стекол соответствует >. = 560 нм, монотонно возрастает с увеличением экспозиционной дозы облучения в интервале 10 —10 Кл/кг и не зависит от температуры облучения до 80° С (рис. 11.3). Детекторы на основе метафосфатных стекол также многократного пользования отжиг их после облучения производят при температуре 450° С в течение 15 мин. Для получения воспроизводимых результатов каждую партию стекол следует аттестовать, отдельно. Погрешность измерения экспозиционной дозы с помощью детектора на основе метафосфатных стекол составляет 15—17% [321, 322]. [c.238]

    При работе на высокой чувствительности (5ХЮ единиц оптической плотности на всю шкалу самописца) с детекторами, измеряющими поглощение излучения в ультрафиолетовой и видимой области, изменение окружающей температуры на 1 °С вызывает смещение нулевой линии. В этом случае теплоизоляция нромежуточ- [c.111]

    На рис. 1. представлена оптическая схема спектрофотометрического детектора. Световой поток от источника излучения попадает па дифракционную решетку, выделяющую излучение с определенной длиной волны, затем проходит через сравнительный и измерительный каналы ячейки и фиксируется на фотоприемнике. Возникающий фототок усиливается дифферепциальпым логарифмическим усилителем. При прохождении через измерительную ячейку вещества, поглощение которого отличается от поглощения элюента, возникает разбаланс фотоумножителя, что и фиксируется на регистрирующем приборе в виде хроматограммы. [c.25]

    Сигнал детекторов, измеряющих поглощение света, может быть пропорционален либо коэффициенту пропускания, либо оптической плотностн. Сигнал детектора, [c.133]

    Важную роль в устройстве детектора играет рациональная конструкция кювет, исключающая возможность образования областей застаивания жидкости. Применяются как цилиндрические, так и прямоугольные кварцевые кюветы объемом в несколько десятков микролитров с длиной оптического пути от 2 до 10 мм. В конструкции УФ-детектора 11У-2 применена система одновременного прохождения света по двум путям (рис. 36) вдоль длины прямоугольной кюветы (20 мм) и в поперечном направлении (1 мм). Если такой прибор укомплектовать двухканальным регистратором (напрпмер, КЕС-482)> фирмы Р11агшас1а)>), то можно при одном и том же усилении сигнала с фотоэлементов вести регистрацию одновременно на двух значениях чувствительности, отличающихся друг от друга в 20 раз.. Это позволяет заметить пик малого поглощения и одновременно прописать форму интенсивных пиков от сильно поглощающих компонентов смеси веществ. Многие фирмы строят свои УФ-де-текторы по двухлучевой схеме прибор оснащается дополнительной кюветой сравнения, через которую может протекать чистый элюент, а луч света от лампы с помощью полупрозрачного зеркала расщепляется и проходит параллельно через две кюветы — рабочую и кювету сравнения. Двухлучевая схема позволяет исключить из регистрации собственное поглощение элюента, которое может изменяться в ходе градиентной элюции, а также кОдМпенсирует изменения яркости лампы, упрощая решение проблемы ее стабилизации. [c.83]

    Излучение источника фокусируется зеркалами на диспергирующее устройство (призма из высококачественного кварцй фракционная решетка). Там пучок разлагается в спектр, изображение которого тем же зеркалом фокусируется на выходной щели монохроматора. Выходная щель из полученного спектра вырезает узкую полосу спектра чем уже щель, тем более монохроматична выходящая полоса. С помощью зеркала монохроматизированный пучок разделяется на два одинаковых по интенсивности луча один проходит через кювету сравнения, а другой - через кювету с образцом. Вращающейся диафрагмой перекрывают попеременно то луч сравнения, то луч образца, разделяя эти лучи во времени. После прохождения кювет световой поток зеркалами направляется на детектор, которым обычно служит фотоэлемент или фотоумножитель. После детектора сигнал усиливается и поступает на специальное электронное устройство -разделитель сигналов, где он раздваивается на два канала сигнал образца и сигнал сравнения. В обоих каналах сигналы усиливаются и подаются на самописец, который регистрирует отношение степени пропускания световых лучей через кювету образца к пропусканию светового потока через кювету сравнения. Логарифм данного отношения равен разности оптических плотностей образца и эталона эту величину можно записать, если перед самописцем установлено логарифмирующее устройство. В этом случае спектр будет представлять зависимость оптической плотности от длины волны или волнового числа и зависит от концентрации измеряемого образца. Для получения спектра, не зависящего от концентрации раствора, экспериментально полученный спектр перерисовывают по точкам, пользуясь законом Бугера-Ламберта-Беера, в спектр в координатах lg (или )- X (или V), Нерегистрирующие спектрофотометры - однолучевые приборы, измеряющие по отдельным точкам (спектрометрический метод). В сочетании с измерительной системой по схеме уравновешенного моста это наилучшие приборы для точных количественных измерений, которые осуществляются путем сравнения сигналов при попеременной установке в световой пучок образца и эталона. Основной их недостаток состоит в большой затрате времени для записи спектра, а не полосы поглощения при единственном значении длины волны. [c.185]

    Если используется фотометрический детектор, работаи>-щий в УФ и видимой области спектра, то при фиксированном максимальном объеме ячейки важно, чтобы длина пробега луча была как можно большей, иначе можно потерять выигрыш в концентрации в максимуме пика, полученный бтагода-ря уменьшению объема колонки При максимальной величине чувствительность обнаружения также максимальна, поскольку поглощение пропорционально длине пробега луча Однако оптическое пропускание быстро снижается с уменьшением апертуры, что приводит к ухудшению линейности и отношения сигнал/шум Для цилиндрической ячейки с фиксирован-вым объемом длина пробега луча обратно пропорциональна квадрату диаметра ячейки [c.34]

    Долзилом была описана аппаратура, использующая в качестве детектора стандартный спектрофотометр Бекмана. Горизонтальная стеклянная трубка для наблюдений длиной 30 сж и с внутренним диаметром 2 мм закрепляется в прямоугольном металлическом блоке, который можно передвигать через отделение для ячеек спектрофотометра отсчеты оптической плотности берут обычным образом для ряда положений. Смесительную камеру изготовляют, просверливая два отверстия у конца трубки для наблюдения. Растворы реагирующих веществ из резервуаров подают в смесительную камеру давлением газа (2—3 атм). Для каждого опыта требуется около 500 мл кан дого из реагирующих веществ. Можно исследовать реакции с временем полупревращения примерно до 5 мсек. Если температура постоянна с точностью до 0,1°, константы скорости реакции воспроизводятся с точностью до 2—3%. Такую степень термостатирования нетрудно получить в области температур 10—30° для этого достаточно иметь баню с постоянной температурой, окружающую резервуары, а также нагревающие элементы в металлическом блоке. Значительным достоинством этой аппаратуры является то, что с ней легко работать и не требуется знания электроники. Такую аппаратуру можно использовать для исследования любой реакции, приводящей к изменению поглощения в видимой или ультрафиолетовой части спектра, если только имеется достаточное количество реагирующих веществ и растворителя. [c.45]

    Существуют два типа приборов — однолуче1ые и двухлучевые. В двухлучевых приборах излучение, выходящее из источника, разделяется на два в точности эквивалентных луча один из них проходит через образец, а другой — через кювету сравнения. При вращении плоского зеркала эти лучи последовательно попадают на входную щель монохроматора. Когда энергия излучения в обоих лучах одинакова (в отсутствие образца), детектор выдает сигнал постоянного тока. Поскольку усилитель настроен на переменное напряжение, этот сигнал не усиливается. Если же интенсивность этих двух лучей неодинакова (вследствие поглощения образцом), возникает сигнал переменного тока, частота которого определяется скоростью вращения зеркала. Этот сигнал усиливается и приводит в действие сервомотор, который вводит в луч сравнения аттенюатор (оптический клин из поглощающего вещества) либо выводит его так, чтобы интенсивность двух лучей вновь сравнялась. Положение аттенюатора служит мерой пропускания образца если аттенюатор связан с самописцем, его движения регистрируются и дают запись пропускания. [c.152]

    Ван-де-Граафа) проходит сквозь водный раствор. Одновременно через этот раствор проходит и анализирующий световой луч [34]. Вспомогательный световой луч может быть пропущен через монохроматор на чувствительный детектор и снят его спектр. После этого выбирается подходящая длина волны и изучается временная зависимость поглощения после прохождения импульса. При исследовании реакций электрона в некоторых случаях желательно удалить гидроксильные радикалы, для этой цели используются простые поглотители (s avengers) гидроксильных радикалов, такие, как спирты или водород. Выбранная длина волны может лежать либо в полосе поглощения эле1гтрона (при этом оптическая плотность будет уменьшаться после импульса), либо в полосе по глощения растворенного вещества или продукта, образованного при взаимодействии этого вещества с электроном. Большинство исследований, проведенных до сих пор, было выполнено первым [c.474]

    Фотометрические детекторы для жидкостной хроматографии являются, как правило, двухдучевыми. С их помощью определяют разность поглощения света в измерительной и сравнительной кюветах, через которые, соответственно, пропускают элюат с колонки и растворитель. Может быть использован и принцип двухволновой фотометрии, когда детектор имеет только одну кювету, через которую движется элюат с колонки. Фотометрирование проводят на двух длинах волн. При этом на одной длине водны поглощает как хроматографируемое вещество, так и растворитель, а на другой — только хроматографируемое вещество. Таким образом, можно выделить поглощение света анализируемым веществом. Однако для этого необходимо знать соотношение мольных акстинкций растворителя на обеих длинах волн. Преимуществом метода двухволновой фотометрии является возможность более точного учета изменения оптической плотности растворителя при градиентной элюции и фотометрии оптически неоднородных объектов, например при сканировании хроматографических капиллярных колонок или сканировании пластинок в количественной тонкослойной хроматографии, где необходимо определить оптическую плотность фона и поглощения хроматографического вещества в одной точке пространства. [c.95]

    Наличие методов исследования инфракрасного поглощения микрообразцов делает возможным анализ микроколичеств твердых тел, жидкостей и газов. Здесь существенным является то обстоятельство, что при переходе к микрообразцам толщина образца или его поверхность, через которую проходит излучение, будет неизбежно уменьшаться. При уменьшении толщины образца отклонения регистрирующего устройства будут уменьшаться, если не используются приборы с изменением масштаба шкалы. Сокращение поверхности образца путем применения маленькой кюветы уменьшает количество энергии, попадающей на детектор. Для преодоления этой трудности используют оптическую систему, которая уменьшает размер пучка в том месте, где пучок проходит через образец. Таким образом, становится возможным анализ более мелких образцов. [c.24]

    Значение коэффициента погащения данного вещества даже в точке, соответствующей максимуму поглощения, зависит от степени монохроматичности применяемого излучения. Чем шире полоса спектра, тем меньше среднее значение коэффициента погашения. В объективных спектрофотометрических методах применяются узкие полосы с малой эффективной шириной ( 1 нм), которые вырезаются с помощью монохроматоров. Таким образом, достигается более высокая чувствительность, чем в случае субъективных визуальных методов, в которых используются оптические фильтры, пропускающие свет со значительно большей шириной полосы ( 50 нм). Однако необходимо помнить, что энергия излучения, которая попадает на детектор, ограничивается шириной полосы поэтому следует выбирать некоторое компромиссное решение, учитывающее, с одной стороны, допустимую степень чувствительности и селективности определения, а с другой стороны, требования, обусловленные детектированием излучения. [c.370]


Смотреть страницы где упоминается термин Детектор по оптическому поглощению: [c.14]    [c.363]    [c.226]    [c.218]    [c.186]    [c.84]    [c.85]    [c.100]    [c.98]    [c.204]    [c.205]    [c.213]    [c.347]    [c.648]    [c.118]    [c.138]    [c.101]    [c.714]    [c.483]   
Руководство по газовой хроматографии (1969) -- [ c.153 ]

Руководство по газовой хроматографии (1969) -- [ c.153 ]




ПОИСК





Смотрите так же термины и статьи:

Оптические детекторы

Оптическое поглощение



© 2024 chem21.info Реклама на сайте