Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кристаллизующиеся полимеры

    Ответ. Термофиксация кристаллизующихся полимеров, способствуя увеличению подвижности макромолекул, приводит к снижению внутренних напряжений в изделии (волокне) и сопровождается увеличением кристалличности полимера. Термофиксация происходит тем полнее, чем ближе температура процесса к температуре максимальной скорости кристаллизации волокнообразующего полимера и чем больше продолжительность процесса. В этих условиях достигается наиболее стабильная структура волокна. [c.144]


Рис. 3.10. Схематическое изображение кристаллизующегося полимера Рис. 3.10. <a href="/info/376711">Схематическое изображение</a> кристаллизующегося полимера
    В случае кристаллизующихся полимеров, изложенная выше картина значительно усложняется. Кристаллизация наступает всегда при температуре более высокой, чем Гс, а в ряде случаев и чем Гт [2] и тоже связана с резким ослаблением сегментального движения. Однако кристаллические области в полимерах составляют лишь большую или меньшую часть материала, они сосуществуют с аморфными областями, в которых сегментальное движение достаточно интенсивно. Свойства полимера при этом оказываются сильно зависящими от соотношения между содержанием обеих фаз, от их взаимного влияния и морфологии кристаллических образований. [c.40]

    Возможность последнего пути была экспериментально продемонстрирована в работе [9]. Под влиянием ингредиентов резиновой смеси в процессе вулканизации может происходить падение содержания гране-1,5-звеньев на 8—12%. Этот путь представляется весьма заманчивым, так как позволяет, с одной стороны, реализовать все преимущества кристаллизующегося полимера в резиновой смеси (когезионная прочность, клейкость и т. д.), а с другой стороны, получать относительно устойчивые к действию низких температур резины. [c.325]

    Однако сопротивление разрыву таких полиуретанов вдвое меньше по сравнению с кристаллизующимися полимерами [47, 48]. [c.539]

    В кристаллизующихся полимерах, находящихся при температуре ниже точки плавления, вторичные структуры представлены лентами и лепестками . Наиболее совершенной структурой полимера является единичный кристалл, обладающий минимальной поверхностной энергией кристаллической фазы. Менее совершенными в этом отношении являются сферолитные структуры, из которых могут быть построены ленты и лепестки . [c.64]

    Экспериментально установлено, что теплоемкость при постоянном давлении твердых аморфных полимеров плавно растет с ростом температуры, скачкообразно увеличивается вблизи Tg (включаются сегментальные движения) и возрастает, как правило, медленно в области расплава (см. рис. 5.12). У кристаллизующихся полимеров в области Tg скачок теплоемкости отсутствует, так как доля аморфной части обычно низка. Значение Ср резко возрастает в области плавления. Теоретически в этой области Ср равно бесконечности. На практике, поскольку у полимеров существует не точка, а температурный интервал плавления, Ср проходит через острый максимум, а затем снижается до значения меньшего, чем в области расплава. Как отмечалось ранее, Ср в расплаве медленно растет с повышением температуры (рис. 5.14). Площадь под каждой из кривых рис. 5.14 вблизи равна доле кристаллической части в объеме полимера и теплоте плавления X. Обе эти величины зависят от предыстории течения и термической предыстории расплава, что уже обсуждалось в гл. 3. Значения I для различных полимеров приведены ниже  [c.127]


    Получение покрытий из кристаллизующихся полимеров — относительно новое направление исследований. Для кристаллических полимеров, каким является полиэтилен, в процессе переработки характерны все стадии кристаллизации, начиная от образования центров кристаллизации и первичных надмолекулярных структур и кончая формированием сферолитной структуры в охлажденном покрытии. [c.121]

    Гетерогенное зародышеобразование - зародышеобразование на поверхности инородных частиц - твердых примесей, специальных добавок или подложек, имеющих кристаллографическую решетку, аналогичную решетке кристаллизующегося полимера. [c.398]

    Кристаллиты - наименьшие упорядоченные области в массе кристаллизующегося полимера, обладающие протяженностью в несколько сот ангстрем. Их можно рассматривать как единичные дефектные кристаллы. [c.400]

    Текстура полимера - ориентированное состояние кристаллизующихся полимеров, которое характеризуется определенным преимущественным расположением кристаллитов и соответствующей анизотропией свойств (см.). [c.406]

    В аморфном состоянии макромолекулы непрерывно изменяют свою форму. В процессе кристаллизации происходит постепенное выпрямление и ориентация отдельных сегментов, чему, однако, препятствует перепутанность линейных макромолекул и больщая подвижность их. Вследствие этого выпрямление и взаимная ориентация никогда не происходят по всей длине макромолекулы и кристаллические участки всегда перемежаются с аморфными, т. е. неупорядоченными, участками. Размеры кристаллических участков в полимерах невелики (50—500 А). Поэтому одни и те же макромолекулы могут входить в состав нескольких кристаллитов, между которыми находятся хаотично расположенные участки этих же макромолекул, составляющие аморфную фазу полимера (рис. 18). Легче кристаллизуются полимеры [c.49]

    В типичных для переработки полимеров условиях охлаждение и затвердевание изделий всегда начинаются с их поверхности и постепенно распространяются к центру. Из приведенных выше соображений следует, что если изделие формуется из кристаллизующихся полимеров, то его структура у поверхности будет мелкозернистой, а в центральных областях — более крупнокристаллической, так как эти области из-за малой теплопроводности полимеров остывают гораздо медленнее. Экспериментальные данные подтверждают этот вывод. [c.56]

    Приблизительные значения коэффициента сжимаемости расплава и коэффициента термического расширения соответственно составляют 1,5-10" Па и 5-10" К . Поэтому ошибки, вносимые предположением о постоянстве плотности и независимости ее от давления и температуры, малы. Отметим явление кристаллизации под действием давления расплавов кристаллизующихся полимеров, которая может происходить при температурах не очень далеких от нормальной температуры плавления. Поскольку, как обсуждалось в гл. 3, кристаллизация — процесс кинетический, она приводит к зависимости плотности от времени. [c.126]

    С этих позиций следует подходить и к продолжающимся спорам о структуре полимерных расплавов илй о конформациях отдельных макромолекул в окружении себе подобных. В последние два года появилась серия работ, посвященных решению второго предмета спора методом малоуглового рассеяния нейтронов. Опыты, были выполнены только на гибкоцепных полимерах атактических (т. е. некристаллизующихся) — полистироле и полиметилметакри-лате —и на расплавах полиэтилена (поскольку это кристаллизующийся полимер). В первых двух случаях, как и следовало ожидать, среднеквадратичный радиус инерции меченых (т. е. обычных, [c.48]

    Затвердевание цилиндрических выдувных изделий происходит при преимущественной молекулярной ориентации в 0-направлении. Если ориентация слишком велика, то можно ожидать образования зародышей кристаллизации в 2-направлении. В толстостенных выдувных изделиях из кристаллизующихся полимеров ориентация может быть обнаружена только в пристенном слое. [c.583]

    Кристаллизующиеся полимеры в твердом состоянии ведут себя во многом, как обычные твердые тела, и образование кристаллической решетки практически полностью подавляет их специфические механические (релаксационные) свойства. [c.7]

    Продольному течению противодействуют силы поверхностного натяжения и обратимые компоненты деформации поэтому реализовать его возможно лишь во вполне определенном диапазоне скоростей растяжения и температур. В кристаллизующихся полимерах осуществить продольное течение можно лишь при высоких температурах (выше температуры плавления) обычно это течение приводит к ориентационной кристаллизации (см. гл. VI). [c.7]

    Исходя из представлений о ближнем порядке и кинетической памяти , можно предполагать, что в не слишком перегретых расплавах линейных кристаллизующихся полимеров минимальные линейные размеры ориентированных агрегатов равны 5 нм, что соответствует наименьшему объему микроблоков 1,3-см . Несомненно, размеры аналогичных микроблоков в высокоэластическом состоянии должны быть больше, чем при более высоких температурах в расплавах полимеров. [c.65]

    Не будем касаться этих осложнений, ограничившись одним замечанием. При нагревании застеклованного кристаллизующегося полимера от 7 < Гоо до Т > То мы снова вынуждены пройти опасную область вблизи Гпл- В этой области, если не соблюсти условий скорости повышения температуры, может начаться кристаллизация, именуемая (не вполне удачно) расстекловыванием . В случае неорганических стекол (от их технологии и пошел указанный жаргонный термин) это расстекловывание приводит к так называемым кристаллизационным катастрофам, когда возникающие в результате очень медленной кристаллизации внутренние напряжения вызывают взрыв изделия, часто с превращением его в мелкую пыль. [c.78]


    В определенной мере рассматриваемые факторы затрагивают и ширину диапазона стеклования или размягчения. В силу только что изложенных причин диапазон, в пределах которого происходит выделение или поглощение теплоты стеклования, именуют аномальным интервалом. Такой термин обусловлен тем, что с этим интервалом связаны не только эндо- или экзотермические эффекты, легко регистрируемые на термограммах, но и аномалии кинетических макроскопических параметров, например той же вязкости. При размягчении стекла вязкость в аномальном интервале, вместо того чтобы падать с повышением температуры, поначалу увеличивается до равновесного (для данной температуры) значения, а потом уже экспоненциально убывает, что весьма напоминает множественные пики плавления при отжиге застеклованных частично кристаллизующихся полимеров (сначала степень кристалличности растет, затем начинается собственно плавление). [c.90]

    У кристаллизующихся полимеров, так же как и у аморфных, диэлектрическая релаксация наблюдается как в области выше температуры стеклования, так и ниже ее. В этих полимерах диэлектрические потери обуславливаются двумя типами теплового движения — сегментальным движением в аморфной фазе и подвижностью небольших участков макромолекул, сохраняющейся даже при весьма низких температурах. [c.248]

    Значения е и tg б кристаллизующихся полимеров возрастают при повышении полярности полимеров значения е и tg б релаксационных диэлектрических потерь при кристаллизации полимеров уменьшаются tg б в 2—4 раза а е в 0,2—0,3 раза. Это связано, с одной стороны, с переходом полярных участков макромолекул в кристаллиты и, с другой стороны, с увеличением ширины релаксационного спектра полярных групп, оставшихся в аморфной фазе. [c.248]

    Интересное исследование [47] аддитивного галогенирования полиалкено.меров с получением кристаллизующихся полимеров подтверждает большие перспективы применения галогенирования для синтеза и модификации регулярно построенных полимеров. [c.238]

    Кристь-лличеокие полимеры образуются в том случав, если их макромолекулы достаточно гибкие и имеют регулярную структуру. Тогда при соответствупцих условиях возмошш фазовыВ переход внутри пачки и образование пространственных решеток кристаллов. Кристаллизующимися полимерами являются полиэтилен, полипропилен, полиамиды и др. Кристаллизация осуществляется в определенном интервале температур. [c.22]

    Существенное влияние на процесс переноса веществ в полимерах оказывают наличие кристаллических областеЁ в полимере и структура аморфных областей. Проницаемость кристаллизующихся полимеров меньше, чем соответствующих аморфных полимеров. [c.44]

    Хитин и хитозан - кристаллизующиеся полимеры, характеризующиеся кристаллографической ячейкой, аналогичной целлюлозной период идентичности Ь = 10,3 А (см. табл. 6.1). [c.331]

    Механические свойства кристаллизующихся полимеров тесно связаны с молекулярной структурой п температурно-силовыми условиями испытаний. Основное отличие этих материалов от аморфных заключается в том, что при их растяжении (так же, как и при растяжении пластической стали) образуется шейка. Ио в отличие от пластичных металлов шейка по мере растяжения прорастает через весь образец. В шейке происходит скачкообразное, ступенчатое разрушение кристаллической структуры и образование новых вытянутых и ориентированных вдоль действия силы структур. При этом в первоначально изотропном материале возникает анизотропия — резкое различие свойств вдоль паправлепия нагрузки и во взаимно иерпепдикулярпых паправлениях. Такая картина может повторяться, если провести растяжение об- [c.50]

    Линейные кристаллизующиеся полимеры используются для производства волокон (лавсан, терилен) и нлеиок. Процессы поликонденсации полифункциональных веществ находят широкое применение в производстве связующих веществ для пластических. масс и пленкообразующнх для лаковых композиций (глифтале (1ые и пентафталевые смолы). [c.421]

    Свойства блоксополимеров отличаются от спойств простых сополимеров даже при их одинаковом химическом составе. Это объясняется тем, что отдельные гомополимерные блоки в составе макромолекул имеют большую длину. Вследствие этого блоксополимер не утрачивает свойств, присуш,их гомополимерам, составляющим цепь, а как бы суммирует качества этих гомополимеров. Соединяя блоки кристаллизующихся полимеров с блоками полимеров аморфной структуры, можно получить материал, сочетающий преимущества кристаллических и аморфных полимеров. Получая сополимер, состоящий из гидрофильных и гидрофобных блоков различных [c.535]

    Грубой моделью кристалло-аморфного полимера является суперсетка, узлы которой образованы кристаллитами, играющими роль зажимов , а деформационные свойства обусловлены аморфными сочленяющими участками, состоящими из проходных цепей. Доля этих цепей (в расчете на число цепей в единичном сечении кристаллита) редко превышает 30%, а из этих 30% примерно лишь десятая часть непосредственно реагирует на нагрузку. Именно по этой причине (малая доля держащих нагрузку цепей) реальная прочность кристаллизующихся полимеров обычно составляет несколько процентов от теоретической (которую нетрудно рассчитать, зная параметры кристаллической решетки [16, с. 8 25, гл. I 31, с.451—477]). [c.44]

    Параллельная укладка цепей уменьшает величину А5, присущую аморфному каучуку, до значений, характерных для кристаллизующихся полимеров, поскольку конформационная энтропия ориентированных цепей"имеет меньшее значение. С другой стороны, ориентация не оказывает никакого влияния наХэнтальпию аморфного каучука. Поэтому [величина АЯ в уравнении (3.6-2) остается неизменной и определяется из теории Гвысокоэластичности каучука. Таким образом, уравнение (3.6-2) показывает, что при деформации каучука должно наблюдаться заметное повышение температуры плавления, увеличивающее степень переохлаждения, которая является главным фактором, управляющим скоростью процессов кристаллизации. [c.60]

    Для обеспечения прочного адгезионного соединения необходимо по возможности увеличить площадь контакта. Однако следует иметь в виду, что одного этого часто бывает недостаточно, если поверхностный слой одного из соединяемых тел обладает низкой механической прочностью. Так, в случае кристаллизующихся полимеров, у которых рост сферолитов сопровождается вытеснением низкомолекулярных фракций на периферию, поверхностный слой, если не принять специальных мер, обеспечивающих интенсивное зародышеобразование на поверхности, будет обладать меньшей прочностью. Увеличения прочности поверхностного слоя удается добиться, инициируя формирование сетчатых структур на поверхности твердого тела [6]. Плавление кристаллизующихся полимеров на поверхности подложки, обладающей высоким уровнем свободной поверхностной энергии (например, полиэтилена на поверхности алюминия), обеспечивает формование прочных адгезионных соединений. В тоже время адгезия к поверхности алюминия полиэтиленовой пленки, охлаждение которой происходило на воздухе, оказывается невелика. Известны экспериментальные данные, свидетельствующие о том, что интенсивное зародьппеобразование, возникающее на поверхности с высокой поверхностной энергией, сопровождается вытеснением с поверхности низкомолекулярных фракций. Одновременно в поверхностном слое возникает большое число межмолекулярных и внутрикристаллических зацеплений. Оба эти эффекта приводят к упрочнению поверхностного слоя и способствуют увеличению прочности адгезионного соединения. [c.83]

    Влияние ориентации на коэффициент теплопроводности очень велико для гибкоцепных кристаллизующихся полимеров типа ПЭВП. Суммарная анизотропия, несмотря на наличие упорядоченности, не наблюдается, если складчатые цепи уложены в сферолитную структуру, однако при условиях кристаллизации, аналогичных описанным в разд. 3.6, влияние ориентации цепей на коэффициент теплопроводности становится значительным. Хансен и Берни [18] наблюдали двадцатикратную разницу в значениях к, измеренных в поперечном и продольном направлениях относительно ориентации (рис. 5.9). Такой эффект достаточно велик, чтобы иметь практическую значимость. [c.120]

    О влиянии длины цепей и их распределения на механические свойства изотропных и подвергшихся ориентационной вытяжке полимеров в литературе имеются весьма противоречивые сведения. Имеются данные о линейной зависимости между прочностью капронового волокна и величиной обратной молекулярной массы , но это — кристаллизующийся полимер и поэтому к подобным корреляциям следует отнестись осторожно. Наиболее существенные изменения прочности связываются с областью молекулярных масс З-Ю —15 10 т. е. там, где резко меняется прочность изотропного полимера. Обнаруживается также линейная зависимость между логарифмом прочности волокна и обратной величиной молекулярной массы полимеров, однако, в случае волокон, которые всегда кристалличны, тип зависимости любого параметра от М связан не с готовой структурой, а с технологической предысторией, где доминируют реологические факторы. Для ориентированных пленок поливинилацетата наблюдается линейное увеличение прочности с молекулярной массой. Однако эта зависимость четко проявляется лишь по достижении молекулярных масс, при которых прочность изотропного поливинилацетата становится неизменной. При изучении аморфных полиметилметакрилата, полистирола и поливинилацетат, получаются близкие результаты, хотя соответствующие зависимости не являются строго линейными. На механические свойства ориентированных полимерных материалов гораздо больше влияют условия формован 1я и вытяжки волокон и пленок [22].-Влияние молекулярной массы на механические свойства линейных аморфных полимеров следует оценивать с учетом изложенных представлений об их квазисетчатом строении. Прочность и другие механические свойства полимеров определяются их строением, однако при формовании и вытяжке волокон молекулярная масса полимера регулирует протекание процессов ориентации макромолекул, определяя структурные особенности и свойства получаемых полимерных материалов. [c.197]

    В дополнение к упомянутым выше напряжениям в литьевых изделиях накапливаются упругие напряжения, вызванные ориентацией при течении расплава. Используя уравнение состояния расплава, с помош,ью выражения (14.1-9) при заданных значениях Т х, у, t) можно оценить величину ориентации в каждой точке отливки в конце процесса заполнения формы при Т решения этой задачи в первую очередь необходимо расчетным путем установить наличие фонтанного течения, поскольку именно такой характер течения приводит к образованию поверхностных слоев литьевого изделия. Далее следует подобрать уравнение состояния, соответствующее данному характеру течения и большим деформациям, и определить степень их влияния на кинетику кристаллизации и морфологию кристаллизующихся полимеров. В работе Кубата и Ригдала [44] предпринята косвенная попытка решения подобной задачи. Можно надеяться, что в ближайшее десятилетие будет достигнут существенный прогресс в этой области исследований. Конструкция пресс-формы и технологические параметры литья под давлением также являются факторами, влияющими на структурообразование в литьевых изделиях. [c.541]

    Еще раз укажем, что аморфный полимер во всех трех областях, в частности, в области каучукоподобной эластичности II, надлежит рассматривать как расплав. Это существенно, ибо ряд в принципе кристаллизующихся полимеров (например, полиэтилен-терефталат) можно быстрым переохлаждением перевести в стеклообразное и вполне аморфное состояние. Правда, при этом в области II (именно из-за релаксационного расстекловывания ) возникает сегментальная подвижность, а она, в свою очередь, может способствовать кристаллизации. Расплав вновь появится в этом случае при Гх, п. Что касается агрегатных состояний, или степени твердоподобия, то, как уже указывалось, их не удается трактовать однозначно, как для простых веществ. Впрочем, различие это в значительной мере кажущееся, если мы ограничиваемся таким механическим свойством, как податливость тогда перемещая стрелку действия, можно нивелировать разницу между этими состояниями напротив, если рассматривать обратимость деформаций, специфика полимеров, особенно состояния каучукоподобной эластичности, станет бесспорной. Эта бесспорность лишь подчеркивается тем обстоятельством, связанным с зыбкостью границ (особенно для Гт), что расплавы выше Гт и даже достаточно разбавленные растворы гибкоцепных полимеров при очень быстрых воздействиях проявляют не только твердоподобие, но и высокоэластичность при вполне умеренных частотах (см. гл. V). [c.80]

    При постепенном повышении температуры некристаллизующе-гося стекла происходит нечто аналогичное внезапной кристаллизации при отжиге, застеклованных кристаллизующихся полимеров типа полиэтилентерефталата. Вязкость убывает по экспоненциальному закону, и системе все легче вернуться к равновесному (для температуры опыта) состоянию, энергия Гиббса которого отлична от энергии Гиббса того состояния, с которого началось замораживание. Эта разность энергий Гиббса и выделяется в виде теплоты [c.89]

    Поскольку в данном случае это происходит с кристаллизующимся полимером, который при иных условиях образовал бы вполне устойчивые КВЦ, приходится допустить, что в условиях, когда удается наблюдать эффект Юдина, имеет место по крайней мере локальный переход второго рода, т. е. исчезновение гош-ротамеров, не фиксируемый переходом первого рода, который был бы связан с образованием КВЦ. За счет поправки хав подобная система устойчива (опыт это подтверждает), пока присутствует матрица В. Но после удаления матрицы — тем же растворением — система оказывается примерно на 200° выше равновесной (и недостижимой Б обычных условиях) температуры перехода второго рода и обратный переход из перегретого состояния снова приобретает катастрофический характер, как и в суперориентированных аморфных полимерах. [c.224]

    Большинство кристаллизующихся полимеров имеют области, резко отличающиеся по молекулярной упорядоченности, т. е. являются частично-кристаллическими. Если при охлаждении полимера область потери подвижности сегментов характеризуют температурами стеклования Тс ), то при нагревании полимера говорят о температуре его размягчения Гразм, которая характеризует область (или точку) размораживания сегментальной подвижности. Анализ экспериментальных данных, полученных для частично-кристаллических полимеров различными физическими [c.55]


Смотреть страницы где упоминается термин Кристаллизующиеся полимеры: [c.322]    [c.558]    [c.51]    [c.56]    [c.424]    [c.48]    [c.197]    [c.198]    [c.200]    [c.219]    [c.262]   
Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.3 , c.289 , c.320 , c.553 ]

Энциклопедия полимеров Том 2 (1974) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 , c.3 , c.289 , c.320 , c.553 ]

Основы технологии переработки пластических масс (1983) -- [ c.7 , c.19 , c.25 ]

Физико-химические основы производства искусственных и синтетических волокон (1972) -- [ c.178 ]




ПОИСК







© 2025 chem21.info Реклама на сайте