Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Плавление полимеров

    Кроме фланцевого соединения с отбортовкой футерующего слоя применяется соединение с вклеенной пластмассовой втулкой (рис. 5.9). Антикоррозионные покрытия из лакокрасочных материалов, наносимые на внутреннюю поверхность труб, используются для защиты труб от воздействия водных сред и нефтепродуктов, Нанесение покрытий осуществляется способами погружения, свободного или принудительного налива. Способ погружения применим для одновременного нанесения покрытия на внутреннюю и наружную поверхности труб и заключается в погружении пакета труб в лакокрасочный материал. Способ свободного налива лакокрасочного материала в трубу при одновременном ее вращении осуществляется путем подачи материала по шлангу в верхний конец трубы, установленной под углом ЗО к вертикали. Покрытия из порошковых материалов (мелкодисперсные порошки фторопласта, пентопласта, полиэтилена) наносятся струйным методом и электростатическим. При струйном методе порошок распыляется по внутренней поверхности трубы, нагретой несколько выше температуры плавления полимера, что обеспечивает оплавление порошка и образование ровного плотного покрытия. Труба вращается на приводных роликах и совершает поступательное перемещение вдоль оси неподвижной электропечи и штанги с форсункой-распылителем, устанавливаемой внутри трубы. [c.185]


    Присутствие алифатических заместителей в метиленовых звеньях диаминов и дикарбоновых кислот затрудняет кристаллизацию полимера и ориентацию его макромолекул. Плотность упаковки в полимере нарушается, при этом снижается температура плавления полимера и уменьшается его механическая прочность. Например, температура плавления полиамида, полученного из метиладипиновой кислоты [c.450]

    Представления о структуре монокристаллов полимеров, полученных из разбавленных растворов, справедливы и для пластин, получающихся при кристаллизации из расплавов. Некоторое различие наблюдается лишь в их размерах. Это связано с тем, что температуры, при которых кристаллизация полимеров из разбавленных растворов происходит с заметной скоростью, обычно значительно ниже температуры плавления. Температуры кристаллизации из расплава могут быть близки к температуре плавления полимера, а это способствует образованию более толстых пластин. Обычно при кристаллизации из расплава вырастают целые блоки пластин — многослойные кристаллы. Как и монокристаллы, выра- [c.173]

    Эту температуру называют температурой плавления полимера (Тпл). Термин температура плавления нужно понимать в этом случае, как несколько условный. При этой температуре устраняется упорядоченность расположения частиц, но не достигается текучесть. Ввиду того что разупорядочение расположения частиц сопровождается изменением объема, по изменению объема с температурой можно определять температуру плавления полимеров (рис. 204). [c.578]

    Плавление даже при очень медленном нагревании захватывает большей частью некоторый интервал температуры порядка нескольких градусов. В табл. 67 приведены температуры и теплоты плавления некоторых полимеров и изменение их энтропии при этом. Температура плавления полимера, конечно, всегда выше, чем его температура стеклования. Образование кристаллитов может происходить только при температурах более низких, чем температура плавления. [c.578]

    При плавлении полимера сохраняется ближний порядок, а плотность вещества уменьшается на 3 - 5%. [c.144]

    Технология полимерных материалов требует значительных затрат энергии (механической, тепловой и др.), связанных с обязательным предварительным переводом системы в вязкотекучее состояние. Это достигается либо растворением (в том числе и пластификацией), либо плавлением полимеров. [c.161]

    Температура плавления полимера, по внешнему виду напоминающего воск, колеблется от 60 до 75°. [c.406]

    Синтез полиамидов с количеством атомов углерода между амидогруппами менее шести затрудняется вследствие циклизации мономеров. К тому же очень близкое расположение амидных групп в таком полимере настолько увеличивает силы межмолекулярного сцепления, что температура плавления полимера становится выше температуры его термического распада. [c.448]


    Плавление полимеров за счет теплопроводности без удаления образую-I щегося расплава......................... [c.7]

    После застывания впуска червяк вновь начинает вращаться. Расплав полимера собирается в полости, образующейся перед червяком вследствие его осевого смещения назад. Величина объемного расхода расплава в процессе пластикации регулируется противодавлением (т. е. действующим на червяк гидравлическим давлением), которое определяет также давление, возникающее в расплаве на выходе из червяка. После того как перед червяком собралась порция расплава, необходимая для следующего впрыска, вращение червяка прекращается. Плавление полимера, находящегося в неподвижном червяке, продолжается за счет тепла, подводимого вследствие теплопроводности от горячего корпуса. Поэтому этот период времени называют временем окончательного прогрева. Тем временем отвердевшее изделие выталкивается из формы, которую закрывают и готовят к впрыску следующей порции расплава. [c.22]

    Это одновременно ограничивает и достижимые градиенты температуры и скорости плавления. Наконец, высокая вязкость расплава препятствует развитию обычной и турбулентной конвекции, существенно ограничивая эффективность перемешивания расплава и препятствуя удалению пузырьков газа. Между тем ясно, что для того чтобы плавление с перемешиванием могло стать практическим способом плавления полимеров, необходимо обеспечить интенсивное перемешивание, большое значение отношения поверхности к объему и периодический контакт поверхности массообмена с атмосферой или вакуумом. [c.253]

    Говоря о теплофизических свойствах подлежащих плавлению полимеров, следует иметь в виду, что перед плавлением гранулированный полимер предварительно спрессовывают в твердый блок. Такой уплотненный материал при моделировании можно считать сплошной средой. И только в некоторых процессах (таких, как спекание) необходимо принимать во внимание пористую структуру. Для большинства процессов переработки полимеров условия плавления таковы, что можно пользоваться сведениями о значениях к, р, Ср и к, приведенными в разд. 5.5, учитывая при этом, что теплофизические свойства зависят от эффектов структурирования, сопровождающих процесс переработки полимеров. [c.257]

    Плавление полимеров за счет теплопроводности без удаления образующегося расплава [c.259]

    В этих уравнениях Вг — модифицированное число Бринкмана, которое является мерой интенсивности диссипативного разогрева М — величина, пропорциональная отношению тепловой энергии, необходимой для плавления полимера, к тепловой энергии, необходимой для нагрева расплава до температуры Го. Если последняя величина мала, то М будет велико и конвективными членами в урав- [c.286]

    Хорошее ламинарное смешение достигается лишь тогда, когда в смесителе расплав полимера подвергается большой суммарной деформации. При зтом удается существенно уменьшить композиционную неоднородность материала по сечению канала. Однако особенность профиля скоростей в экструдере заключается в том, что суммарная деформация, накопленная частицами жидкости, зависит от местоположения частиц. Следовательно, степень смешения по сечению канала неодинакова. А значит, и по сечению экструдата следует ожидать определенную композиционную неоднородность. Количественной мерой этой неоднородности могут быть функции распределения деформаций Р (у) и f (у) йу. Проанализируем эти функции для экструдера с постоянной глубиной винтового канала червяка, используя простую изотермическую модель, описанную в разд. 10.2 и 10.3. В гл. 12 рассмотрен процесс смешения в пласти-цирующем экструдере, в котором плавление полимера влияет на вид функций распределения. [c.406]

    Температура плавления полимера = 110°С коэффициент теплопроводности кщ = 0,1817 Дж/(м-с-К) теплоемкость С , = 2,596 кДж/(кг-К) плотность твердого полимера 915,1 кг/м его теплоемкость = 2,763 кДж/(кг-К) насыпная плотность гранулированного полимера при атмосферном давлении 595 кг/м теплота плавления 129,8 кДж/кг. [c.449]

    Можно показать, что при осуществлении и других элементарных стадий аппарат, работающий по принципу двух движущихся поверхностей, обладает очевидными преимуществами. При транспортировке твердого полимера, как и при перекачивании расплава, наличие двух увлекающих поверхностей приводит к увеличению производительности транспортировки. Рассматривая элементарную стадию плавления, мы установили, что единственным высокоэффективным механизмом плавления является плавление при нагревании за счет теплопроводности с принудительным удалением расплава вынужденным течением. Логично предполагать, что плавление полимера между двумя параллельными движущимися пластинами будет сопровождаться интенсивным удалением расплава (рис. 12.23). [c.455]

    О—СНг—СНг—...—полиоксиэтилен (ПОЭ) —полиформальдегид (ПФА). ДТА (—) 172°С (плавление полимера) (—) 360°С (деполимеризация). ИКС полосы поглощения при (см ) 1250— 1000 (широкая сильная полоса с максимумом при 1111, относимая к колебаниям групп С—О—С) 3015, 2940, 1437, 1386 (полосы средней интенсивности, относимые к скелетным колебаниям групп СН2). Температурный диапазон эксплуатации от —40 до - -80°С. При постоянной эксплуатации в воде набухание составляет около 1%. Не стоек к действию минеральных кислот, устойчив к щелочам. Прочность на сжатие 107,8—127,4 МПа, на растяжение 63,7— [c.316]


    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации Т1 и Т2. Из данных рис. 8.8 следует наличие расхождений с результатами теории (пунктирная кривая), основанной на предположении о виде функции корреляции (8.10). При повышении температуры не обнаруживается тенденции к сближению Т1 и тз, которое, согласно теории, должно наступать сразу после проявления минимума Ть Еще более существенно наличие при высоких температурах двух поперечных времен релаксации и одного продольного. [c.225]

    С повышением температуры амплитуды колебаний атомов или частей молекул увеличиваются и достигают критической величины, определяемой расстоянием между соседними частицами, что приводит к плавлению полимерных кристаллов и исчезновению кристаллической фазы. При плавлении полимера резко увеличивается свободный объем и ослабевают связи между цепями, хотя подвижность макромолекул как целого остается незначительной из-за большого внутреннего трения. Уменьшение коэффициентов теплопроводности кристаллических полимеров может быть объяснено также увеличением рассеяния в них тепловых волн вследствие изменения параметров элементарной ячейки и ослаблением межмолекулярного взаимодействия, связанного с увеличением расстояния между цепями. Уменьшению X кристаллических полимеров с повышением температуры может способствовать и рассеяние структурных фононов на границах аморфных и кристаллических областей, на границах раздела кристаллов и на границах раздела сферолитов. Кроме того, с повышением температуры уменьшается длина свободного пробега фононов, что также может приводить к уменьшению X. [c.257]

    Процесс плавления полимера происходит в некотором температурном интервале, ширина которого зависит от предыстории образца. Резкий переход из кристаллического состояния в расплавленное может наблюдаться лишь при высокой степени кристалличности полимеров. Если кристаллы полимера имеют достаточно большие размеры, то роль поверхностной свободной энергии будет несущественной. Однако для реальных полимеров эти условия не соблюдаются, что приводит к расширению температурного ин- [c.258]

    Информацию о связи молекулярного строения и надмолекулярной структуры полимеров с их физическими свойствами обычно получают, изучая их физические превращения (или переходы). К таким превращениям относятся процессы стеклования и плавления. Анализ экспериментальных данных, полученных для разных полимеров, показывает, что оба эти процесса наблюдаются вместе лишь у кристаллических полимеров, содержащих неупорядоченные и упорядоченные области. Из сопоставления температурных зависимостей термодинамического потенциала Ф, коэффициентов термического расширения Р и изотермической сжимаемости Хт следует [10.7], что характер их изменения в области стеклования и плавления полимеров оказывается примерно одинаковым (рис. 10.21). [c.271]

    Кроме того, изменяя содержание галогена, можно направленно варьировать в широком диапазоне температуры стеклования или плавления полимеров. Следует отметить, что введение реакционноспособного хлора в полимерные цепи не только изменяет свойства исходного полимера (например, переводит типичный пластик-полиэтилен в эластомерный продукт), но и открывает новые возможности дальнейших полимераналогичных превращений по связи С—С1. [c.46]

    Исследование процесса плавления полимеров с помощью ДТА дает возможность изучить некоторые их свойства (температуру и температурный интервал плавления, теплоту плавления и др.) и особенности структуры (степень кристалличности, состав статистических и блок-сополимеров, стереорегулярность [c.105]

    Определить температуру плавления полимера в бомбе. [c.73]

    Особенно часто с помощью ДТА исследуют температурный интервал и температуру плавления полимеров. Начало плавления определяют по началу резкого отклонения дифференциальной кривой, а температурой плавления полимера считают температуру, соответствующую максимуму пика. Характерным для многих полимеров является случай, когда термографическая кривая в области плавления характеризуется не одним пиком, а двумя или несколькими. Причиной этого чаще всего является наличие кристаллитов различной степени совершенства либо полиморфизм полимера, т. е. его способность существовать в нескольких различных кристаллографических модификациях. [c.210]

    В новейших типах литьевых машин используются червячные и дисковые пластикаторы материала. В последнем случае плавление полимера осуществляется за счет тепла, выделяющегося при трепии полимера между вращающейся и неподвижной плитами. Эти материалы перерабатываются при более низкой температуре, которая при этом регулируется. Такие машины могут применяться для формования жесткого поливинилхлорида, каучука и реактопластов. Литьевое оборудование с программированным управлением включает в себя счетнорешающее устройство, которое регулирует такие параметры, как температуру зон обогрева цилиндра, продолжительность впрыска и охлаж-де1шя, давление впрыска, скорость вращения червяка-плунжера. Автоматический контроль качества отливок не предусмотрен. [c.174]

    МПа (180—185 кгс/см ). Продолжительность выдержки 40 мин. В процессе прессования сначала происходит плавление полимера, а затем разложение газообразователя. Поскольку при этом давление образующихся газов несколько ниже давления прессования, при охлаждении прессформ газы остаются в затвердевшем полимере. Извлеченные из преесформы заготовки поступают в камеры вспенивания 7 для получения плит пенопласта заданной кажущейся плотности. [c.32]

    Скорость полимеризации е-капролактама в присутствии этой каталитической системы значительно выше, чем при гидролитической полимеризации. Поэтому можно проводить полимеризацию при относительно низкой температуре (ниже температуры плавления полимера) и при атмосферном давлении. В этом случае превращение жидкого (расплава) е-капролактама в твердый капролон- происходит одновременно по всей массе, что дает возможность получать полимер напосредственно в формах. Обычно этот метод применяется для получения крупногабаритных и толстостенных изделий. [c.82]

    Процессы поликонденсации можно проводить в расплаве (если мономеры и полимер достаточно устойчивы при температуре плавления полимера), в растворе, в твердой фазе, а также на поверхности раздела двух фаз (несмешивающиеся жидкости, жидкость - твердое вещество и т. д.)- В условиях глубокого вакуума, обеспечивающего удаление низкомолекулярных продуктов реакции, при температуре ниже или выще можно проводить реакцию дополиконденсации (соответственно в твердой или жидкой фазе). [c.273]

    Температура плавления полимера 238, температура стеклования 140 . С введением в основную цепь такого полимера групп —СНд-О— несколько снижается температура его плавления и стеклования, но значительно гюзрастает чластичность пленок и во- юкон. [c.429]

    Нагрев адиабатическим сжатием. Было показано, что плавление полимеров адиабатическим сжатием возможно для таких процессов, как литье под давлением [2]. Рассмотрите этот метод, оценив порядок величин членов уравнения теплового баланса для аморфных (например, ПС) и частично-кристаллических (например, ПЭНП) полимеров. Используйте данные из Приложения А. [c.301]

    Этот метод пригоден также для анализа пластицирующего экструдера. Результаты таких расчетов приведены на рис. 11.28. При больших скоростях вращения червяка происходит быстрое плавление полимера, и распределение деформаций оказывается подобным тому, какое наблюдается в экструзионном насосе. Увеличение скорости вращения червяка при постоянном объемном расходе приводит к увеличению противодавления. При этом происходит заметный сдвиг функции распределения деформаций в область более высоких значений деформации. И снова мы видим, что распределение деформаций в червячном экструдере довольно узкое. Следовательно, среднее значение деформации у [46] может служить критерием смесительного воздействия. Средняя деформация пропорциональна величинам ПН, QpIQd и 6. Рис. 11.29 иллюстрирует зависимость Y от угла винтовой нарезки червяка при различных значениях Qp/Qd- Пропорциональность средней деформации величине 1/Н установлена экспериментально, как было показано нами ранее при рассмотрении ФРД для случая течения между параллельными пластинами. Точно так же экспериментально было установлено, что средняя деформация возрастает при увеличении противодавления. Аналогичным образом установлены предельные значения угла нарезки червяка, [c.413]

    Возвращаясь к нашей грануле, отметим, что зона задержки заканчивается, когда находящийся на пробке расплавленный полимер начинает медленно двигаться по поверхности цилиндра. В какой-то точке экструдера нанга гранула окажется на поверхности раздела пленка расплава — твердый полимер в этот момент ее температура экспоненциально повышается до температуры плавления полимера. Образовавшаяся жидкая частица быстро переместится в область, занятую расплавом и расположенную у толкающей стенки. При экструзии аморфных полимеров размягченные частицы движутся по направлению как к поверхности цилиндра, так и к толкающей стенке канала. [c.432]

    Это тепло, выделяющееся на поверхности раздела, частично отводится через охлаждаемый цилиндр, а частично уходит в твердую пробку. В результате распределение температуры в пробке имеет максимум на поверхности раздела (цилиндр — пробка). Если пре небречь выделением тепла на других поверхностях, то задача сводится к анализу процесса теплопередачи в одном направлении и решается методами, рассмотренными в разд. 9.3. Так как мощность источника тепла меняется вдоль оси, то необходимо использовать численные методы решения. Это было сделано Тадмором и Бройером [18 ]. Полученные результаты свидетельствуют о том, что температура пробки у поверхности цилиндра возрастает экспоненциально. Ясно, что как только будет достигнута температура плавления полимера, вынужденное движение по механизму сухого трения перейдет в вынужденное течение по механизму вязкого трения [14]. Полученное решение задачи о неизотермическом движении пробки полимера объясняет необходимость эффективного охлаждения цилиндра в зоне питания для достижения высокого давления. [c.437]

    Теоретический анализ литья под давлением включает все элементы анализа установившейся непрерывной пластицируюш,ей экструзии, а кроме того, осложняется анализом неустойчивого течения, обусловленного периодическим враш,ением червяка, на которое накладывается его осевое перемеш,ение. Для управления процессом литья под давлением важной является зона плавления в цилиндре пластикатора. Экспериментально показано, что механизм плавления полимера в цилиндре литьевой машины подобен пластикации в червячном экструдере [1 ]. На этом основана математическая модель процесса плавления в пластикаторе литьевой машины [2]. Расплав полимера скапливается в полости, образующейся в цилиндре перед червяком. Гомогенность расплава, полученного на этой стадии, влияет как на процесс заполнения формы, так и на качество изделий. В настоящем разделе рассматривается только процесс заполнения формы. Предполагается, что качество смешения и температура расплава остаются постоянными на протяжении всего цикла литья и не изменяются от цикла к циклу. [c.518]

    При температурах значительно выше температуры стеклования или плавления полимеров измерение ширины линии затруднительно, поэтому целесообразно измерять времена ядерной магнитной релаксации ti и та. Данные рис. VIII. 6 свидетельствуют о наличии расхождений с результатами теории, основанной на предположении об экспоненциальном виде функции корреляции. При повышении температуры не обнаруживается тенденция к сближе  [c.274]

    Из всех физических переходов наиболее детально с помощью ДТА изучен процесс плавления, т. е. переход из кристаллического состояния в аморфное. Из-за дефектности кристаллической структуры полимеров плавление их практически всегда происходит не в строго определеннон точке, а в температурном интервале, ширина которого зависит в первую очередь от регулярности строения макромолекул и термической предыстории образца, т. е. условий кристаллизации, влияющих на совер1иеиство кристаллической структуры образца. В этих случаях температурой плавления полимера обычно считают температуру, соответствующую максимуму кривой ДТА. Начало плавления определяют по началу резкого отклонения этой кривой от предшестеуюи1его. хода. [c.105]


Смотреть страницы где упоминается термин Плавление полимеров: [c.37]    [c.56]    [c.58]    [c.404]    [c.423]    [c.425]    [c.455]    [c.57]    [c.58]    [c.430]    [c.106]    [c.124]   
Смотреть главы в:

Реология полимеров -> Плавление полимеров

Свойства и химическое строение полимеров  -> Плавление полимеров

Свойства и химическое строение полимеров -> Плавление полимеров

Физико-химические основы процессов формирования химических волокон -> Плавление полимеров


Практическое руководство по синтезу и исследованию свойств полимеров (1976) -- [ c.36 ]

Реология полимеров (1966) -- [ c.30 ]

Кристаллизация полимеров (1966) -- [ c.0 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Физика и химия твердого состояния органических соединений (1967) -- [ c.416 ]

Энциклопедия полимеров Том 1 (1974) -- [ c.578 , c.579 ]

Энциклопедия полимеров Том 3 (1977) -- [ c.2 ]

Свойства и химическое строение полимеров (1976) -- [ c.19 , c.285 , c.289 ]

Основы технологии переработки пластических масс (1983) -- [ c.112 , c.119 , c.202 ]

Физико-химические основы процессов формирования химических волокон (1978) -- [ c.32 ]

Краткий курс физической химии Издание 3 (1963) -- [ c.578 , c.579 ]




ПОИСК







© 2025 chem21.info Реклама на сайте