Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Крекинг факторы, влияющие на него

    Разумеется, существуют многочисленные другие факторы, связанные с характеристиками катализатора, которые влияют на реакции крекинга и, следовательно, косвенно оказывают влияние и па вторичные реакции. Некоторые из этих факторов подробно рассмотрены в литературе [48, 56]. К ним, в частности, относятся а) тип катализа тора б) удельная поверхность в) размер зерна г) распределение по размерам пор д) отравление серой е) отравление металлами ж) отравление азотом. Из этих факторов единственным, оказывающим непосредственное влияние на те явления, которые можно назвать вторичными реакциями, по-видимому, является отравление катализатора металлами. Отравление катализатора щелочными металлами частично ослабляет кислотный характер катализатора и тем самым снижает его активность во всех важных для промышленного процесса реакциях. Следовательно, продукты, образующиеся при крекинге на катализаторе, отравленном щелочными металлами, будут по своему характеру и составу приближаться к продуктам термического крекинга. Обычно ка катализаторах отлагаются металлы из аипарат фы установки или содержащиеся в сырье железо, никель, ванадий и медь. Известно, что при условиях, обычно существующих в системе каталитического крекинга, тяжелые металлы способны разлагать углеводороды на углерод и водород. Поэтому высказывалось предположение [39], что эта реакция просто налагается на обычные реакции крекинга. Однако, поскольку алкены обладают высокой реакционной способностью и имеются основания предполагать, что они наиболее подвержены разложению, влияние металлов можно рассматривать как ре зультат непосредственного их воздействия па вторичные реакции. Суммарный результат будет аналогичен результатам других вторичных реакций, т. е. выход кокса и легких газов увеличивается и выход бензина снижается, [c.158]


    Основные факторы промышленных процессов термического превращения нефтяного сырья. Основными факторами термического крекинга нефтяного сырья являются термическая стабильность сырья, температура и длительность процесса. Что касается давления, то оно влияет на результаты крекинга только при определенных условиях. [c.38]

    Каталитический крекинг протекает на кислотных катализаторах, содержащих сильные центры Бренстеда и Льюиса. Он сопровождается многочисленными процессами скелетной изомеризацией, циклизацией, ароматизацией, диспропорционированием, дегидрированием и др. Каждый из этих процессов осуществляется только на центрах соответствующей природы и силы. Слабые центры катализируют такие реакции, как цис- и транс-изомеризация, сильные — изомеризацию двойной связи, сопровождаемую скелетной изомеризацией, крекингом и коксообразованием на центрах увеличивающейся силы. Дальнейшие осложнения вносят размер, кривизна и конфигурация пор, присутствующих в кристаллических катализаторах. Учет значимости этих параметров является новым в области гетерогенного катализа, хотя сейчас уже известно, что эти факторы существенно влия ют на селективность и включены в перечень основных свойств промышленных гетерогенных катализаторов. [c.134]

    Для реакций полимеризации давление является одним из решающих факторов. Оно отражается не только на составе крекинг-бензина, который содержит олефинов тем меньше, чем выше было давление при крекинге. При повышении давления увеличивается удельный вес бензина. Последнее обстоятельство указывает на повышение содержания циклических углеводородов. Так, например, при крекинге газойля при 450° и 15 ат получают беизин удельного веса 0,750 и с йодным числом 128, тогда как при тех и е условиях, но при давлении 110 ат из того же газойля получают бензин удельного веса 0,770 и с йодным числом 48,5. Еще сильнее давление влияет на состав крекинг-газов, которые нас должны особенно интересовать. При одном и том же выходе бензина количество крекинг-газов и содержание олефинов в них тем меньше, чем больше давление, под которым проводили крекинг. Это объясняется вторичными реакциями, состоящими в термической полимеризации образовавшихся олефинов, которая, как известно, сильно завпсит от давления. Вместе с тем понижение выхода олефинов при увеличении давления частично вызвано процессами алкилирования. [c.233]


    При рассмотрении данных о составе газов крекинга, приведенных в табл. 24, следует обратить особое внимание на содержание этилена и на количественные отношения этилена к этану и пропилена к пропану, поскольку эти факторы сильно влияют на процессы разделения газов. Из таблицы видно, что при низкотемпературном крекинге этилена образуется мало. Наибольшее его количество получается в процессах, проводимых при самой высокой температуре, когда оно составляет приблизительно 30 об, %. [c.112]

    Давление. Оно заметно не влияет на скорость крекинга и образование бензина при обычных его выходах. Несмотря на это фактор давления нельзя недооценивать, так как крекинг под давлением обеспечивает наиболее желательные условия для распределения тепла и устранения местного перегрева и поэтому дает меньший выход смол и кокса. Процесс под давлением протекает с максимальным эффектом и с минимальным расходом топлива. [c.116]

    В последней своей работе Д. К. Коллер р ], рассматривая влияние таких физических факторов, как мощность разряда, напряжение и сила тока, расстояние между электродами, а также различных типов разряда, на процесс получения из метана ацетилена, проводит параллель между этим процессом и обычным пиролизом метана и приходит к выводу, что все формы электрических разрядов в отношении выходов продуктов крекинга (разложения) влияют постольку, поскольку в каждой из них можно получить ту или иную температуру газа и концентрацию радикалов . Отсюда Коллер делает вывод, что для получения высоких выходов ацетилена температура в разрядной зоне не должна быть чрезмерно низкой. За такую минимальную температуру он принимает 800° К. Подсчитывая, далее, минимальный теоретический расход энергии, потребный для получения 1 м ацетилена, он получает в результате 4.75 kWh (на осуществление реакции) -+-2.5 kWh (на подогрев до 800°) = 7.25 kWh. При учете же побочных процессов (например СН - С-+-2Н2) расход практически будет близок к 8 kWh/M jHg, т. е. к величине, найденной экспериментально. [c.164]

    В условиях каталитического крекинга на конверсию влияют все иоро-числонные выше факторы. Конверсия обычно определяется как разница между 100% и количеством остатка, кипящего выше 205° С в объемных процентах. Она является удобным показателем глубины крекинга как для пилотных, так и для промышленных установок. Тем не монее она пе определяет полностью влияние катализатора на исходное сырье. Первичные продукты реакции, кроме реакций деструкции, подвергаются под действием катализатора различным дополнительным реакциям, и остаток, кипящий выше бензина, не является таким же, каким он был в исходном сырье. В некоторых случаях, когда исходное сырье содержит относительно высокие концентрации соединений азота или тяжелых металлов, качество рециркулирующего продукта может быть заметно улучшено сравнительно с исходным Сырьем, благодаря тому, что значительная часть нежелательных соединений может быть удалена за первый проход над катализатором. Но тем не менее рециркулирующий продукт не является таким жо хорошим сырьем для получения бензина, как природная нефть. Это указывает на некоторую конверсию остатка, кипящего выше 205° С, хотя такая конверсия не отражается на величине конверсии, как было указано выше. [c.144]

    Основными факторами термического крекинга нефтяного дырья являются термическая стабильность сырья, температура и длительность процесса. Что касается давления, то оно влияет на результаты крекинга только при определенных условиях. [c.68]

    Технологические средства решения перечисленных задач непрерывно развиваются, но в основном они давно определились. Это известный набор процессов висбрекинг, каталитический крекинг, каталитический риформинг, гидрокрекинг, алкилирование, полимеризация, изомеризация, гидроочистка, коксование, газификация остатков. Ввод этих процессов усложняет технологическую структуру НПЗ, делает ее более гибкой н адан гируе] к рыночным условиям. Степень ее совершенства становится показателем технической подготовленности НПЗ к выпуску продукции, удовлетворяющей требованиям рынка. Вместе с тем она существенно влияет на экономическую эффективность производства нефтепродуктов. Поэтому перспективная стратегия должна разрабатываться в единстве двух аспектов технологического и экономического. Если в первом из них налицо полная определенность, то второй изучен недостаточно. Иногда наблюдается тенденция к снижению уровня рентабельности продукции и капитала по мере углубления переработки нефти, в других случаях дело обстоит наоборот. Действует сложная система взаимосвязей технологических и экономических факторов, которая может приводить к неоднозначным результатам при различных стратегиях развития технологической схемы НПЗ. Поэтому при формировании концепции структурной модернизации отрасли необходима опора на систему показателей, позволяющих оценить фактически сложившуюся технологическую структуру в сравнении с образцовым нефтеперерабатывающим комплексом, который соответствует выявленной общемировой тенденции. Они могут найти применение для выбора рациональной последовательности ввода прогрессивных процессов в схему конкретного НПЗ. Методически важно упорядочить анализ взаимосвязи структурно-технологических усовершенствований и их экономических последствий с помощью специального показателя. Желательно, чтобы он компактно, информативно, в то же время теоретически обоснованно и реалистически характеризовал экономическое преимущество той или иной технологической структуры предприятия. Очень известный емкий показатель глубины переработки нефти на эту роль не вполне подходит, поскольку различные процессы, направленные на его увеличение, неравнозначны в экономическом отношении они дают разные приросты прибыли или чистой продукции (ЧП) на каждый процент их мощности, исчисленный относительно мощности первичной переработки нефти. К тому же показатель глубины переработки нефти не отражает многих прогрессивных изменений в структуре технологических процессов. Это видно из способа его расчета  [c.446]


    Использование заводской аппаратуры крекинга базируется на тех основных факторах процесса крекинга, которые обсуждались в главе 2 и могут быть суммированы следующим образом. Образование крекинг-бензина из сырья начинается, как только достигается требуемая температура. Скорость образования бензина увеличивается с повышение температуры, она удваивается при повышении температуры на каждые 14° С при крекинге под давлением и на каждые 18 С при крекинге в паровой фазе. Скорость при данной температуре зависит от природы сырья, причем она больше для высококипящих и высокопарафинистых продуктов. Давление заметно не влияет на образование бензина. С другой стороны, образование кокса начинается только через определенный прол ежуток времени после начала процесса крекинга. Для большинства дестиллатов прямой гонки кокс начинает образовываться после получения 25—30% крекинг-бензина и для крекинг-сырья (рисайкл) после получения приблизительно 20% бензина. Для тяжелого сырья и остатков ейход бгнзина, соответствующий началу коксообразования, еще ниже — около 10—15%. Различие в кинетике образования бензина и кокса дает возможность вести процесс при температуре, которая обеспечивает достаточную скорость крекинга без образования кокса. Допустимая глубина крекинга за цикл или максимальный выход бензина без образования кокса соответствует приблизительно 20% для операций с рисайклом в смешаннофазном процессе. Допустимая глубина крекинга за цикл в парофазном процессе — только 10%. [c.241]

    Другими факторами, благоприятствующ ими смолообразованию, являются температура, свет и легкий доступ воздуха. Температура влияет очень сильно. В ускоренном смолообразовании при 100° С индукционный период обычно не превышает нескольких часов, тогда как при комнатной температуре он может продолжаться много месяцев, Мардлес и Мосс [29] исследовали смолообразование при различных температурах (табл. 132). Ухудшение крекинг-бензинов идет быстрее летом и в тропических странах. [c.317]

    Стандартные методики таблетирования с КВг и суспендирования применимы к исследованию адсорбции. Они особенно удобны, когда адсорбция сильная и па нее в заметной степени не влияет выдержка образца на воздухе. Уодсворт и сотр. [11, 15] применили эту методику для изучения адсорбции органических молекул на глинах, олеиновой кислоты на флюорите и гексантиола на цинксодержащих минералах. Этот тип исследования применим для получения характеристик поверхностных свойств реальных или потенциальных катализаторов. К использованию таблеток с КВг нужно относиться осторожно. Некоторые координационные комплексы претерпевают обмен лигандов с бром-ионами при запрес-совании в таблетки с КВг. Аммиак, адсорбированный на катализаторе крекинга, может реагировать при прессовании в таблетки с КВг, и в результате будет образовываться бромид аммония [43]. Не вызывает сомнений, что реакции в таблетках с КВг зависят от давления, температуры и времени прессования одпако влияние этих факторов изучено очень мало. [c.340]


Смотреть страницы где упоминается термин Крекинг факторы, влияющие на него: [c.46]   
Химия углеводородов нефти и их производных том 1,2 (0) -- [ c.115 , c.121 , c.133 ]




ПОИСК





Смотрите так же термины и статьи:

влияющие фактор



© 2025 chem21.info Реклама на сайте