Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Магний от щелочных металлов

    Литий Ь от остальных щелочных металлов отличает большее значение энергии ионизации и небольшой размер атома и иона. Литий по свойствам напоминает магний (диагональное сходство в периодической системе). [c.485]

    Аналогичный поточный метод анализа может быть использован для определения некоторых элементов (например, кальция, магния, щелочных металлов) в жидкостях биологического происхождения в случаях, когда подготовку пробы можно свести к простейшим операциям (разбавление, добавление реактивов и т. п.). Примеры применения метода ААА в медицине и биологии приведены, например, в [11]. Можно было бы без труда привести также примеры применения аналогичной техники анализа в самых разнообразных отраслях науки и промышленности. [c.207]


    Петрографы, со своей стороны, должны добиваться того, чтобы нужные им анализы проводились насколько возможно полно, а не довольствовались бы, как это часто случается, определениями кремнекислоты, окиси алюминия, окислов железа, кальция, магния, щелочных металлов и воды. Такие сокращенные анализы, правда, имеют иногда свои основания, так как их, несомненно, можно использовать для некоторых целей. Однако при таких неполных анализах не только может остаться незамеченным многое, что представляло бы большую ценность для исследователя, но, что еще важнее, могут быть сделаны совершенно неверные заключения. Нам пришлось наблюдать достаточное число примеров таких неверных заключений, и мы имеем веские основания настаивать на большей полноте анализов горных пород и минералов, проводимых с чисто научной целью [c.877]

    Одновременно с цинком при кислом выщелачивании переходят в раствор также железо, медь, кадмий, марганец, никель, кобальт, свинец, мышьяк, сурьма из пустой породы выщелачиваются также магний, щелочные металлы, частично глинозем, известь и даже кремнезем. Количество примесей зависит от состава и свойств руды. [c.465]

    Образования фосфогипса не происходит при разложении фосфатов азотной кислотой. В этом случае в зависимости от условий разложения (нормы и концентрации кислоты, температуры процесса) образуются фосфорная кислота, нитраты кальция, магния, щелочных металлов, железа, алюминия, некоторых других металлов и кремнефтористоводородная кислота. Переработка таких растворов или суспензий дает возможность получать высококонцентрированные сложные удобрения в виде твердых и жидких продуктов. [c.191]

    Кремнекислоту, алюминий, барий, кальций, магний, щелочные металлы и т. д. определяют в соединенных фильтрах и промывных водах, полученных при двойном осаждении щавелевой кислотой. Если количество примесей незначительно, как это имеет место в технических цериевых солях, например в хлористом церии, то для анализа необходимо брать 5-кратное количество вещества. [c.465]

    Присутствие сульфатов, солей свинца и бария, хлоридов, солей меди, кальция, магния, щелочных металлов по Германской Фармакопее (VI) определяется следующим образо.м 1,5 г основного салициловокислого висмута озоляют в фарфоровом тигле, остаток растворяют при нагревании в 10 мл азотной кислоты и прибавляют воды до объема в 30 мл. Этот раствор (для каждой пробы берут по 5 мл) не должен изменяться ни от прибавления капли раствора нитрата бария, ни от 10 мл разведенной серной кислоты от одной капли раствора азотнокислого серебра допускается лишь появление опалесценции после прибавления аммиака в избытке должен получиться бесцветный фильтрат. 2 мл того же раствора соли висмута разбавляют 5 мл воды и сильно встряхивают с 1 мл раствора сернистого натрия. После прибавления к фильтрату 2 мл аммиака и раствора щавелевокислого аммония допускается лишь незначительная муть. Смешивают мл того же раствора с 20 мл воды и осаждают 20 мл 10 /д-го раствора углекислого аммония смесь недолго кипятят [c.334]


    Осаждение оксалата кальция в присутствии магния, щелочных металлов, небольших количеств бария и стронция. [c.808]

    В противоположность термической экстракционная кислота содержит значительное количество примесей (серную и кремнефтористоводородную кислоты, железо, алюминий, кальций, магний, щелочные металлы и др.). Состав и степень загрязненности экстракционной кислоты зависят от состава исходного фосфатного сырья и способа производства. [c.281]

    При повышенной температуре СгаОз восстанавливается до металлического хрома водородом, окисью углерода (быстрее — углеводородами), углеродом, кремнием, алюминием, кальцием, магнием, щелочными металлами. [c.17]

    При нагревании водород, углерод, окись углерода, алюминий, магний, щелочные металлы, цианиды и формиаты щелочных металлов восстанавливают окись трехвалентно сурьмы до элементарной сурьмы. [c.487]

    С металлами литий образует интерметаллические соединения. С магнием, алюминием, цинком и с некоторыми другими металлами, кроме того, образует ограниченные твердые растворы. Заметно отличаясь атомным радиусом от остальных щелочных металлов, дает с ними эвтектические смеси. [c.486]

    Подготовка исходных компонентов складывается из следующих операций растворение (смешение), например, нитратов никеля, алюминия и магния, осаждение гидроокисей этих металлов щелочью, промывка осадка от ионов щелочного металла, отфильтровы-вание, промывка, сушка (или прокалка) осадка. [c.24]

    Среди этих катализаторов преобладают смешанные, но довольно часто встречаются и нанесенные контакты. В качестве носителя чаще всего используют окись алюминия с различными добавками, значительно реже — окись магния. Окись алюминия в количественном отношении является основным компонентом таких катализаторов. Окислы щелочноземельных металлов (кальция и магния) входят в количестве более 5% в состав почти всех катализаторов рассматриваемого типа. Окислы щелочных металлов (калия, натрия) вводятся в катализатор в количестве до 5% (предпочтительно— менее 0,5%). Входящие в состав некоторых катализаторов окислы железа кремния следует рассматривать как загрязнения, сопутствующие вводимым компонентам. [c.49]

    Катализатор содержит 4— 40 мас.% никеля на носителе. Он состоит из окислов алюминия, магния,, кальция и солей щелочных металлов в количестве 0,5—30 мас.% (в расчете на металл). Соли щелочных металлов (карбонаты, гидроокиси) при повышенных температурах процесса превращаются в окислы. Отличительной особенностью катализатора является [c.124]

    Катализатор содержит никель или кобальт 0,5 мас.% щелочных металлов (в расчете на КаО) обладает высокой активностью. Катализатор может содержать металлы группы платины и промоторы бериллий и магний или элементы III—VII групп периодической таблицы с атомным числом менее 40. Носителем катализатора является окись алюминия со средним радиусом пор менее 500 А, содержащая около 5% окиси кремния [c.152]

    Если проследить изменение свойств всех остальных элементов, то окажется, что в общем оно происходит в таком же порядке, как и у первых шестнадцати (не считая водорода и гелия) элементов за аргоном опять идет одновалентный щелочной металл калий, затем двухвалентный металл кальций, сходный с магнием, и т. д. [c.49]

    Символ Са серебристо-белый, мягкий металл энергично взаимодействует с кислородом, окисляясь на воздухе реагирует с водой энергичнее, чем магний, но медленнее, чем щелочные металлы [c.148]

    По способности изменять величину коксообразования при каталитическом крекинге нефтепродуктов металлы можно условно разделить на три группы. К первой группе относятся щелочные и щелочноземельные металлы (литий, натрий, калий, цезий, бериллий, магний, кальций, стронций), которые подавляют коксообразование. Из исследованных щелочных металлов наименьшее коксообразование вызывает добавка калия и цезия (рис. 70). Время, требуемое для отложения на катализаторе 2 вес. % кокса, с увеличением концентрации добавляемого металла возрастает. При добавлении щелочноземельных металлов это время возрастает не так резко. Характерная особенность щелочноземельных металлов — при добавлении их к катализатору в равных концентрациях количество образующегося кокса на всех образцах практически одинаково. [c.163]

    Кокс распределяется на образцах, содержащих бериллий, магний, кальций, стронций, почти так же, как и на образцах катализатора, содержащих щелочные металлы. Влияние щелочноземельных металлов аналогично друг другу, и характер распределения [c.164]

    Многие практически важные электрохимические процессы (производство алюминия, магния, щелочных металлов, свободных галогенов, рафинирование металлов и др.) осуществляют в расплавах электролитов. Расплавы электролитов используют также в ядерной технике и в топливных элементах. Основными составными частями расплавленных электролитов являются ионы, на что указывает прежде всего высокая электропроводность расплавов. Поэтому расплавленные электролиты называют ионными жидкостями. Ионные жидкости можно разбить на два класса 1) расплавы солей и их смесей 2) расплавы окислов и их смесей. Этот класс ионных жидкостей приготавливают смещением окислов неметаллов (SiOj, [c.89]


    Карбиды. Карбиды, т. е. соединения металлов с углеродом, делят на несколько классов карбиды, которые представляют собой результат замещения водорода на металл в метане (например AI4 3), карбиды, являющиеся металлическими производными ацетилена (ацетилениды, например карбиды кальция, магния, щелочных металлов, металлов группы меди, цинка и др.), ковалентные карбиды (карбиды кремния и бора) и карбиды, представляющие собой фазы внедрения углеродных атомов в решетку металла. [c.291]

    Глины являются главным сырьем для керамики. Состав глин колеблется в широких пределах они содержат в различных соотношениях алюмосиликаты, окислы железа, кальция, магния, щелочных металлов, титана. Основным минералом, входящим в состав глин, является каолинит А1зОг 28102 2Н2О. [c.363]

    Металлические S , Y, La получают путем металлотермического восстановления ЭСЬ и Э2О3 магнием. Из образующегося сплава магния с металлом магний удаляют высокотемпературной отгонкой в вакууме. Для получения S , Y, La используют также взаимодействие фторидов и хлоридов с кальцием (лолучение S , Y), щелочными металлами (получение Y, La), а также электролиз расплавов фторидов или хлоридов с добавками Na l или K l, вводимыми для понижения температуры плавления. Так, возмож- ность течения процесса  [c.497]

    По Германской Фармгкопее (VI) пробы на сульфат, хлорид, соли свинца, меди, бария, кальция, магния, щелочных металлов, нитрат и. мышьяк производятся точно таким же образом, как указано для основного салициловокислого висмута. [c.336]

    Наиболее легко состояние плазмы достигается у веществ, атомы или молекулы которых обладают наиболее низкими потенциалами ионизации. Так, у большинства щелочных металлов ионизация становится заметной уже при 2 500—3 000° С. В настоящее время плазма играет важную роль в некоторых процессах новой техники — в мощных ракетных двигателях, в процессах преобразования энергии нагретого тела в электрическую энергию (в магни-тогидродинамических генераторах), в плазменных горелках, дающих возможность получать температуру 14 ООО—16 000° К, а высокотемпературная плазма — в термоядерных процессах. [c.120]

    Сырьем для изготовления керамики служат различные по составу природные глины. Основным минералом, входящим в состав глин, является каолинит А12О3-25102-21 20. В чистом виде каолинит встречается редко. Обычно в глинах в различных соотношениях содержатся алюмосиликаты, окислы железа, кальция, магния, щелочных металлов. [c.153]

    Состав золы углей не только по бассейнам, но и по различным шахтам и пластам в пределах одного месторождения весьма разнообразен. Сильно изменяется химический состав золы от наличия в угле больших или меньших количеств свободной породы. Выше, в табл. 28, были даны химические анализы золы различных углей. Из табл. 28 видно, что основными компонентами золы являются окись кремния, окись алюминия, окись железа, кальция и магния. Щелочных металлов в золах бывает, как правило, небольшое количество. Из кислотных радикалов превалирует 50з. Содержание Р2О5 очень незначительно. [c.203]

    Сырьем для изготовления керамики служат различные по составу природные глины, являющиеся продуктом разрушения (выветривания) полевошпатовых пород. Основным минералом, входящим в состав глин, является каолинит АЬОз 28102 2НгО. В чистом виде каолинит встречается редко. Обычно в глинах в различных соотношениях содержатся алюмосиликаты, окислы железа, кальция, магния, щелочных металлов, титана. [c.134]

    Кальций определяли осаждением оксалатом аммония, стронций осаждали в виде сульфата прибавлением серной кислоты и спирта, барий — виде сульфата, магний выделяли в виде фосфорно-аммонийно-магниевой соли с последуюшим прокаливанием до пирофосфата магния. Щелочные металлы — натрий и калий — определяли упариванием фильтратов от гидроокиси тория. После очистки, упаривания с серной кислотой и прокаливания взвешивали сульфаты натрия и калия. [c.60]

    Твердые металлы являются кристаллическими телами, т. е, построены на основе одинаковых элементарных ячеек, п узлах которых лежат частично ионизированные атомы. Повторение таких элементарных ячеек в пространстве образует кристал конечных размеров и обус пвливает его однородность и анизотропию в различных направлениях. Большинство металлов кристаллизуется в одной из следующих трех структур кубической объемпоцентрнрованной (например, щелочные металлы, Ва, аРе, Мо, Ш)—стру <тура а-железа, кубической гранецент-рированной (Са, 5г, N1. А1, (ЗТ1, уТ , уСо, Си, Р1)—структура меди и гексагональной (Ве, Мк, аСо, аТ1, Оз) —структура магния. [c.334]

    Щелочные металлы в природе. Получение и свойства щелочных металлов. Вследствие очень легкой окисляемости щелочные металлы встречаются в природе исключительно в виде соединений. Натрий и калнй принадлежат к распространенным элементам содержание каждого из них в земной коре равно приблизительно 2% (масс.). Оба металла входят в состав различных минералов и горных пород силикатного типа. Хлорид натрия содержится в морской воде, а также образует мощные отложения каменной соли во многих местах земного шара. В верхних слоях этих отложений иногда содержатся довольно значительные количества калия, преимущественно в виде хлорида илн двойных солей с натрием и магнием. Однако большие скопления солей калия, имеющие промышленное значение, встречаются редко. Наиболее важными из них являются соликамские месторождения в СССР, стассфуртские в ГДР и эльзасские — во Франции. Залежи натриевой селитры находятся в Чили. В воде многих озер содержится сода. Наконец, огромные количества сульфата натрия находятся в заливе Кара-Богаз-Гол Каспийского моря, где эта соль в зимние месяцы толстым слое.м осаждается на дне. [c.562]

    Щелочные металлы и их соединения широко используются технике. Литий применяется в ядерной энергетике. В частности, изотоп Li служит промышленным источником для производства трития, а изотоп Li используется как теплоноситель в урановых реакторах. Благодаря способности лития легко соединяться с водородом, азотом, кислородом, серой, ои применяется в металлургии для удаления следов этнх элементов из металлов и сплавов. LiF и Li l входят в состав флюсов, используемых при ]]лавке металлов и сварке магння и алюминия. Используется лтий и его соединения и в качестве топлива для ракет. Смазки, содержащие соединения лития, сохраняют свои с1юйства при температурах от —60 до - -150°С. Гидроксид лития входит в состав электролита щелочных аккумуляторов (см. 244), благодаря чему в 2—3 раза возрастает срок их службы. Применяется литий также в керамической, стекольной и других отраслях химической промышленности. Вообще, по значимости в современной технике этот металл является одним из важнейших редких элементов. [c.564]

    Чистые щелочноземельные металлы имеют более высокие температуры плавления и кипения по сравнению с щелочными металлами, потому что для образования металлических связей в них имеется по два электрона на атом. По той же причине они обладают большей твердостью, хотя их тоже можно резать острым стальньгм ножом. Бериллий и магний-единственные элементы этой группы, широко используемые как конструкционные. металлы благодаря своей легкости они используются в чистом виде или в составе сплавов в авиастроительной и космической промышленности, где вес является очень важным фактором. [c.436]

    Усовершенствована технология получения высокощелочной многофункциональной присадки к маслам [а. с. СССР 263797]. Процесс основан на реакции взаимодействия алкилсалицилата щелочного металла с хлоридом кальция с последующей обработкой полученного алкилсалицилата кальция оксидом или гидроксидом кальция и карбонатация в присутствии промотора метилового спирта. Введение в масло М-20 4 % алкилсалицилата магния и 1 % присадки БФК-30 приводит к резкому снижению отложений на поршнях двигателя, что- позволяет удлинить срок смены масла [а. с. СССР 282567]. [c.86]

    Щелочные металлы воспламеняются с большим трудом только после расплавления хотя бы небольшой части металла, на что требуется много времени. При горении магния, кальция и алюминия образуются густые белые облака, состоящие из оксидов. Поскольку у поверхности горящего металла температура всегда превышает 1500°С, окспды создают светящийся ореол, похожий на пламя. В действительности эти металлы гС рят в тонком слое паров над поверхностью расплавленного металла, частично окисление происходит на са.мой поверхности. [c.142]

    Сильно дегидрирующие металлы (никель, медь, кобальт) даже при ничтожном их содержании в катализаторе приводят к резкому увеличению коксоотложения вследствие повышенного образования непредельных углеводородов. Слабодегидрирующие металлы (ванадий, хром, молибден, железо) при небольшом их содержании в катализаторе (до 0,01 вес. %) образуют меньше кокса, чем исходный катализатор. При большем содержании металла в катализаторе коксообразование увеличивается. При содержании тяжелых металлов в катализаторе более 0,03—0,05 вес. % характер их влияния на изменение времени, необходимого для отложения 2% кокса, одинаков. По уменьшению количества образующегося кокса исследованные металлы располагаются в следующем порядке никель, медь>кобальт> молибден, ванадий > железо, хром>сви-нец>бериллий, магний, кальций, стронций>литий>натрий>ка-лий>цезий. Тормозящее влияние щелочных металлов возрастает в соответствии с увеличением их основности [257]. [c.176]

    Ионообменной очистке от органических электролитов поддаются преимущественно маломинерализованные сточные воды. При извлечении органических оснований или их солей (алифатических или ароматических аминов, азотистых гетероциклов и т. п.), образующих одновалентные катионы, важно, чтобы минеральный состав сточных вод определялся солями щелочных металлов, поскольку двухвалентные катионы кальция, магния и тем более трехвалентные катиоь ы, например железа, поглощаются катионитами настолько сильнее органических катионов, что вытесняют последние в раствор в широком интервале соотношения концентраций. [c.347]


Смотреть страницы где упоминается термин Магний от щелочных металлов: [c.98]    [c.16]    [c.402]    [c.20]    [c.143]    [c.607]    [c.306]    [c.271]   
Практическое руководство по неорганическому анализу (1966) -- [ c.717 , c.718 , c.730 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.655 , c.656 , c.668 ]




ПОИСК





Смотрите так же термины и статьи:

Металлы магнием



© 2025 chem21.info Реклама на сайте