Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Цезий отделение

    Редкоземельные элементы отделяют от других продуктов деления осаждением и экстракцией. От технеция и цезия отделение проводится осаждением гидроокисей, от бария и стронция — осаждением гидроокисей аммиаком, не содержащим СОз , от рутения, ниобия и циркония — осаждением оксалатов редкоземельных элементов. Ряд других элементов отделяется от лантаноидов осаждением сульфидов. Экстракционное разделение проводится 1,5М раствором ди-(2-этилгексил)-фосфорной кислоты в толуоле из 0,01 н. НС1 и последующей реэкстракцией редкоземельных элементов 8М НС1. [c.285]


    Сравнивая элементы, принадлежащие к одной и той же группе, нетрудно заметить, что, начиная с пятого ряда (четвертый период), каждый элемент обнаруживает наибольшее сходство не с элементом, расположенным непосредственно под или над ним, а с элементами, отделенными от него одной клеткой. Например, в седьмой группе бром не примыкает непосредственно к хлору и йоду, а отделен от хлора марганцем, а от йода — технецием находящиеся в шестой группе сходные элементы — селен и теллур разделены молибденом, сильно отличающимся от них находящийся в первой группе рубидий обнаруживает большое сходство с цезием, стоящим в восьмом ряду, но мало похож на расположенное непосредственно под ним серебро и т. д. [c.75]

    Для разделения щелочных металлов используют восходящую хроматографию на полоске бумаги, пропитанной фосфомолибдатом аммония. Сначала пробу элюируют раствором 0,1 М азотной кислоты и 0,2 М нитрата аммония. При этом цезий и рубидий (R О и 0,06) отделяют от калия (Rf 0,27) и смеси натрия и лития (Rf 0,73 и 0,78). Далее разрезают полоску на три части, на средней части проводят обнаружение калия. Нижнюю часть повторно хроматографируют в смеси 0,2 М азотной кислоты и 3,5 М нитрата аммония, чтобы отделить цезий Rt 0,1) от рубидия (Н/ 0,6). Верхнюю часть повторно хроматографируют 96%-ным этанолом для отделения натрия от лития. [c.241]

    Получение соединений рубидия и цезия из любых сырьевых источников — трудная задача. Почти всегда приходится решать задачу их разделения и отделения от близкого по свойствам и обычно преобладающего в сырье калия. Все это приближает технологию соединений рубидия и цезия к технологии рассеянных элементов. [c.119]

    Следовательно, квасцы надо рассматривать как хорошую и во многих случаях естественную форму почти количественного первичного выделения рубидия и цезия с частичным отделением их от калия и как достаточно удобную форму для получения обогащенных 80— 90%-ных цезий-рубидиевых или рубидий-цезиевых концентратов, последующая переработка которых могла бы быть проведена, например, осаждением с использованием других комплексных соединений. [c.140]

    Для отделения цезия от примесей щелочных металлов используется метод фракционной кристаллизации нитрата [1,2]. [c.94]

    Аналитические свойства ионов калия во многих отношениях близки к свойствам ионов аммония, рубидия, цезия и одновалентного таллия [256] Вследствие ненадежности количественного отделения калия от натрия получили распространение косвенные методы определения калия (и натрия), не отличающиеся, однако, высокой точностью [c.10]


    Отделение калия от рубидия и цезия. Предложен ряд способов отделения калия от рубидия и цезия. Некоторые из этих методов мы кратко опишем. [c.134]

    Для отделения хлорида калия (и натрия) от хлоридов рубидия и цезия пользуются удовлетворительной растворимостью последних в конц. НС1 (плотность 1,19) при 25° С [1990]  [c.135]

    Для отделения хлоридов калия и цезия предложена возгонка в вакууме (1—3- 10 мм рт ст ) при 430—440°С В этнх [c.136]

    Метод применяли для отделения натрия от цезия. [c.40]

    Нужно иметь в виду также, что рудной технологии соединений рубидия не существует, и определяющим моментом при попутном извлечении рубидия из различных, в том числе и литийсодержащих, минералов (лепидолита и циннвальдита) является его отделение от других щелочных металлов, прежде всего калия, цезия и лития. Следовательно, тесная генетическая связь лития, рубидия и цезия и сопутствующего им калия не может не приниматься во внимание при разработке технологии извлечения из комплексного сырья и очистки соединений любого из рассматриваемых здесь элементов. Поэтому во многих случаях необходим анализ технологических схем именно комплексной переработки, очевидно, воз- [c.8]

    Предложено много методов для получения хлоридов рубидия и цезия и отделения их от других щелочных металлов. Основная часть методов будет изложена в главе, посвященной технологии рубидия и цезия. В лабораторной практике для получения хлоридов рубидия и цезия часто используется метод нейтрализации карбонатов этих металлов соляной кислотой. Метод является универсальным, так как почти любая соль рубидия и цезия легко может быть переведена в карбонат обработкой ее раствора щавелевой [c.99]

    Иногда в технологии рубидия и цезия могут быть использованы и другие квасцы. Так, некоторые авторы [274] считают, что кристаллизация железо-рубидиевых и железо-цезиевых квасцов приводит к наиболее эффективному отделению рубидия и цезия от других щелочных металлов. Эти квасцы имеют достаточно высокий температурный коэффициент растворимости и резко различаются по растворимости и устойчивости. [c.121]

    В СССР лепидолит без предварительного сплавления разлагали [35] серной кислотой (100% к весу концентрата) при медленном повышении температуры до 320—330° С остывшую массу обрабатывали водой, раствор солей после фильтрования упаривали до выделения квасцов и после их отделения нейтрализовали карбонатом калия, очищая от железа. После упаривания раствора проводили дальнейшую кристаллизацию квасцов, которые отделяли, а фильтрат обрабатывали карбонатом натрия или калия для полного удаления алюминия. Последующая обработка раствора не отличалась от описанной выше [34]. Рубидий и цезий концентрировались в квасцах. [c.232]

    Снний осадок берлинской лазури, сорбировавший примеси рубидия и цезия, отстаивается в течение суток (при меньшем времени отстаивания осадка уменьшается степень извлечения рубидия пз раствора). Осветленный раствор сливают, а пульпу фильтруют на отстойной центрифуге и промывают водой, содержащей небольшое количество солянокислого раствора хлорида железа с целью предупреждения пептизации осадка. В фильтрате после отделения синего осадка остается около 0,013—0,017 г/л рубидия, [c.313]

    Сравнительно малая растворимость алюмоквасцов рубидия и цезия и ее высокий температурный коэффициент давно используются для отделения этих металлов от калия и для разделения рубидия и цезия. [c.89]

    Кремнемолибдаты рубидия и цезия получают обменной реакцией солей этих элементов с растворимым молибдатом натрия. Они могут использоваться для отделения рубидия и цезия от калия. [c.111]

    Цолучение нитрата иезия высокой чистоты сводится к очистке соли от примесей тяжелых металлов и железа и отделению цезия от примесей щелочных металлов (натрия, калия, рубидия). [c.94]

    Промывные воды присоединяют к основному раствору. Фильтрат проверяют иа полноту отделения тяжелых металлов и избытка диэтилдитиокарбамат иона. Для этого в две пробы фильтрата (каждая по 5 мл] добавляют по 2,5 мл изоамилового спирта и в одном случае—1 мл 3%-ного раствора диэтилдитиокарбамата натрия, а в другом — 1 мл раствора сернокислой меди с концентрадирй 1 г/л и взбалтывают. Обе вытяжки изоамилового спирта должны быть бесцветны. Если вытяжки окрашены, проводят дополнительную очистку раствора азотнокислого цезия добавлением 3%-ного раствора диэтилдитиокарбамата натрия и угля. [c.95]

    Маточный раствор, содержащий 20% общего количества азотнокислого цезия, выпаривают до начала выделения кристаллов, после чего кристаллизуют в условиях, аналогичных описанным выше. После отделения кристаллов и их высушивания получают 20 г азотнокислого цезия кйалйфикации ч. , т. е. дополнительно 15%. [c.96]

    Осаждение рубидия и цезия раствором Na2Ag[Bi(N02)e] относят к числу лучших способов их отделения от калия [1449, 1609, 1613] [c.135]


    Из других методов, наиболее часто нспользуе.мых в лабораторной практике, следует от.метить метод, основанный на обменной реакции между строго эквивалентными количествами НЬ2504 (или СзгЗО ) II Ва(0Н)2 в водном растворе [116]. Фильтрат после отделения Ва504 упаривают в платиновой чашке под вакуумом над твердой гидроокисью калия, а сухой остаток обезвоживают прн 300°С в серебряной лодочке в токе декарбонизованного водорода. Полученные таким образом гидроокиси рубидия и цезия содержат 0,5—1,5% карбонатов и 0,10% бария. Для удаления следов влаги через расплавленные гидроокиси либо пропускают тщательно очищенный и высушенный азот [93], либо гидроокиси выдерживают при температуре 400° С в вакууме (1 мм рт. ст.) [c.91]

    Протекающий у КЬгЗЮ в интервале температур 400—450° С, а у S2S2O7 при 470—520° С [158]. В токе водорода или аммиака температура перехода дисульфата цезия в сульфат снижается до 370—420° С. Дисульфат рубидия (в отличие от дисульфатов других щелочных металлов) в среде водорода и аммиака при 300—350° С переходит в сульфид, который полностью улетучивается при 700° С. Это обстоятельство может быть использовано в технологии отделения рубидия от других щелочных металлов. [c.117]

    Считают [425], что осаждение Ме2[5пВгб] является более эффективным способом отделения цезия н рубидия от калия в силу большего различия в растворимостях гексабромостаннатов, чем гексахлоростаннатов щелочных металлов. [c.151]

    Осаждение гексанитрокобальтатов может быть использовано для отделения рубидия и цезия вместе с калием от лития, щелочноземельных металлов, алюминия, железа и марганца [459]. Для этого в исходный раствор, подкисленный уксусной кислотой и охлажденный до 10°С, приливают избыток осадителя (на каждый г МеС1 требуется 200 мл осадителя). Для приготовления осадителя 28,6 г нитрата кобальта растворяют в 500 мл воды, содержащей 50 мл ледяной уксусной кислоты, и к полученному раствору добавляют раствор 180 г NaNOj в 500 мл воды. [c.156]

    По методу У. Шиффелина и Т. Каппона [28], который использовался в США [13, 15, 30], тонкоизмельченный (- 0,09 мм) лепидолит смешивали в стальном реакторе с концентрированной серной кислотой, взятой в количестве 110% (от массы минерала). Смесь выдерживали в течение 30 мин, а затем медленно, в течение более 8 ч, нагревали от 110 до 340° С по специальной прописи с фиксированной по времени выдержкой при определенных значе-ниях температур (степень разложения минерала достигала 94%). Скомковавшуюся массу еще в теплом состоянии обрабатывали водой, и, если из раствора выделялась двуокись кремния, ее отфильтровывали. В раствор переходили соли всех щелочных металлов, алюминия, марганца и железа. Для удаления алюминия в раствор вносили сульфат калия в количестве, рассчитанном на образование калиевых квасцов, первые порции которых особенно богаты рубидием и цезием, так что, проводя дробное выделение квасцов, можно было получать концентрат соединений рубидия и цезия. После отделения квасцов маточный раствор нейтрализовали карбонатом кальция. При этом отделяли остаток алюминия в виде гидроокиси. Далее осаждали кальций, магний, железо и марганец (щавелевой кислотой и раствором аммиака). Это обеспечивало получение чистого раствора сульфата лития. Из него с помощью карбоната калия осаждали технический карбонат лития, который промывали и высушивали при 60° С. [c.231]

    Первая промышленная технология переработки карналлита была разработана В. Файтом и К- Кубиршским [251]. В связи с тем, что основная трудность получения рубидиевых и цезиевых солей состоит в их разделении и отделении этих элементов от калия, авторы критически оценили такие способы очистки солей рубидия и цезия, как гексахлорстаннатный, гидротартратный, квасцовый и сурьмяный. Большинство их рекомендаций часто используется и в настоящее время в лабораторной и промышленной практике. [c.292]

    Квасцовый метод для извлечения цезия впервые был предложен А. Грески [255, 311, 312] и основывается на сокристаллизации цезия с алюмокалиевыми квасцами с последующей адсорбцией этого элемента на катионите Дауэкс-50 . Однако в крупном масштабе метод А. Грески не был использован из-за трудностей отделения рубидия и цезия от калия на катионообменной смоле, разлагающейся в условиях сильного излучения. [c.322]

    Радиоактивный раствор сначала нейтрализуют аммиаком до рН=2—3 для почти полного (90—99%) соосаждения с Ре(ОН)з таких примесей, как церий, иттрий, рутений, технеций, барий, лантан и кобальт и др. Вместе с примесями на этой стадии процесса с гидроокисью железа соосаждается также около 8—9% цезия и рубидия. Основную массу лантаноидов, щелочно-земельных металлов и ЫааиаО выделяют на следующей стадии технологического процесса в результате обработки радиоактивного раствора 50%-ным водным раствором гидроокиси натрия, содержащим соду. В полученном после отделения осадка фильтрате, предварительно подкисленном серной кислотой до концентрации 0,5 моль1л и нагретом до 90° С, растворяют алюмоаммонийные квасцы до тех пор, пока их концентрация не станет равной приблизительно 240 г/л. Затем раствор охлаждают до 4—25° С, кристаллы квасцов отделяют (извлечение цезия составляет 90%) и два-три раза перекристаллизовывают из водного раствора. Полученные таким образом алюмоцезиевые квасцы, содержащие до 15 вес. 7о алюморубидиевых квасцов, растворяют в воде (100 г/л) и через нагретый до 80° С раствор пропускают насыщенный аммиаком воздух до pH = 4,5—7,0. Фильтрат, содержащий после отделения гидроокиси алюминия сульфаты цезия, рубидия и аммония, пропускают [6— 10 мл/(мин см )] через колонку с анионитом (амберлит ША = 4Ю) в гидроксильной форме для удаления сульфат-иона и других анионных примесей. Элюат упаривают почти досуха, обрабатывают соляной кислотой и снова упаривают досуха. [c.322]


Смотреть страницы где упоминается термин Цезий отделение: [c.5]    [c.51]    [c.48]    [c.109]    [c.111]    [c.124]    [c.127]    [c.130]    [c.141]    [c.142]    [c.231]    [c.166]    [c.62]    [c.39]    [c.255]    [c.151]    [c.230]    [c.249]    [c.297]    [c.318]    [c.324]   
Практическое руководство по неорганическому анализу (1966) -- [ c.0 ]

Практическое руководство по аналитической химии редких элементов (1966) -- [ c.43 , c.44 ]

Практическое руководство по неорганическому анализу (1960) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Цезий

Цезий цезий



© 2025 chem21.info Реклама на сайте