Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бор, карбиды, нитриды

    Большой интерес представляют сплавы на основе карбидов, нитридов, боридов и силицидов ниобия и тантала, отличающиеся исключительной твердостью, химической инертностью и жаростойкостью. [c.542]

    Ковалентная связь между частицами образуется в кристаллах некоторых простых веществ (алмаз, графит) или в кристаллах соединений из двух элементов, если последние сравнительно близки между собой по своей электроотрицательности [карборунд (Si ) и некоторые другие карбиды,. нитриды и пр.]. [c.125]


    Для кристаллических веществ требования высокой чистоты предъявляются не только к их химическому, но и фазовому составу. Одним из источников погрешности и существенного разногласия многих данных для карбидов, нитридов, боридов и других соединений, образующих нестехиометрические фазы, служит недостаточная идентификация таких фаз, в особенности в работах прошлых лет, [c.33]

    Ковалентная связь образуется в кристаллах некоторых простых веществ (алмаз, кремний) или в кристаллах соединений двух элементов, если они близки между собой по электроотрицательности (некоторые карбиды, нитриды и др.). В качестве идеального примера кристалла с ковалентной связью [c.8]

    Керамики в широком смысле слова можно определить как неорганические вещества с ионной и ковалентной межатомной связью (оксида, карбида, нитриды и др.). [c.6]

    Оксиды, карбиды, нитриды, тугоплавкие металлы [c.7]

    Бориды, карбиды, нитриды, силициды [c.607]

    Соединения металлического характера. В целом металлическая проводимость уменьшается в следующей последовательности металл>карбид>нитрид>борид. К этой группе относятся соединения элементов побочных подгрупп четвертой, пятой и шестой групп периодической системы. Все они характеризуются высокой химической устойчивостью, твердостью и являются тугоплавкими соединениями (например, температуры плавления Hf 3890 °С ZrN 2985°С). [c.607]

    К неорганическим полимерам относятся многие представители бинарных соединений карбиды, нитриды, бориды и др. [c.612]

    ТВЕРДЫЕ РАСТВОРЫ — твердые однородные кристаллические или аморфные вещества переменного состава. Способность к образованию Т. р. является одним из основных свойств твердого вещества, поэтому Т. р. распространены как среди природных, так и среди искусственно полученных веществ. Например, полевые шпаты, роговые обманки, слюды и т. п., а также гидриды, карбиды, нитриды имеют состав, изменяющийся в весьма широких пределах, причем все эти минералы остаются однородными. Особенно большое значение имеют Т. р. металлов, т. к. при их образовании [c.245]

    Практические применения плазмы. Плазмохимические процессы заняли прочное место в ряде отраслей техники. Они применяются для нанесения металлических покрытий на различного рода изделия, в том числе из полимерных материалов, для получения металлов из оксидов, галидов, сульфидов, для синтеза тугоплавких карбидов, нитридов, оксидов, в форме порошков. Плазменная переплавка стали приводит к получению металла очень высокой прочности и большой долговечности. Плазменные методы отличаются высокой производительностью аппаратуры, но обычно требуют большой затраты энергии. В плазменных процессах, как правило, достигаются очень высокие температуры, которые создают возможности осуществления химических реакции с очень высокими скоростями и образования высокоактивных форм веществ. Особенно эффективно применение плазмы для получения свободных радикалов и атомов из молекул. Так, в тлеющем разряде можно практически полностью осуществить диссоциацию водорода на атомы при 800 К, в то время как при обычном нагревании до этой температуры равновесная смесь содержит лишь 10 % атомов. [c.252]


    Переменный состав имеют многие оксиды, сульфиды, теллуриды, карбиды, нитриды и другие кристаллические соединения. Стехиометрическим законам (постоянства состава, эквивалентов, кратных отношений и др.) подчиняются только соединения постоянного состава. [c.236]

    Гидриды, карбиды, нитриды, сульфиды и фосфиды металлов. Золото практически не растворяет водорода. При обыкновенном давлении растворимость водорода в расплавленной меди составляет 13 JH /IOO г металла, а в расплавленном серебре 0,4 см /100 г. Растворенный водород сообщает этим металлам хрупкость и резко снижает механические свойства ( водородная болезнь ). Косвенным путем можно получить гидриды СиН и AgH, но они очень неустойчивы и разлагаются при 60—70° С. [c.155]

    Бориды. Бор взаимодействует при высоких температурах (1300— 2000° С) в атмосфере аргона с большинством металлов (кроме щелочных, которые при этих температурах возгоняются), образуя бориды состава Ме В . В них сложным образом переплетаются металлическая и ковалентная связи. Один и тот же металл может образовать с бором ряд соединений. При относительном недостатке атомов бора они изолированы друг от друга, при избытке — образуют цепочки, сетки и каркасы. Бориды могут иметь строго определенный состав и быть фазами внедрения, подобно карбидам, нитридам и т. д. [c.174]

    Уран, протактиний и торий отличаются от своих аналогов по химическим свойствам. Уран, в противоположность хрому, молибдену и вольфраму, не образует карбонильных соединений, а его карбид легко гидролизуется водой (карбиды хрома, молибдена и вольфрама представляют собой твердые сплавы, химически инертные). В отличие от титана, циркония и гафния торий образует легко гидролизующийся карбид, нитрид и гидрид. Уран не встречается в природе вместе с молибденом и вольфрамом, а сопровождается обычно торием и лантаноидами торий в свою очередь содержится [c.285]

    Периодический закон и периодическая система и на сегодня являются основой химической классификации. Так, дальнейшее развитие химии привело к появлению целых классов новых неорганических соединений. Это гидриды, карбиды, нитриды, бориды и другие, свойства и условия образования которых целиком определяются положением элементов в периодической системе, такими их характеристиками, как величины ионизационных потенциалов, размеры атомов, тип химической связи и др. В качестве примера на рис. 5.7 представлена классификация гидридов элементов в соответствии с положением их в периодической системе. [c.102]

    Карбид, нитрид, фосфид, арсенид, стибид, борид. [c.63]

    Мембраны из поликомпонентных сплавов на основе палладия, серебра и никеля допускают эксплуатацию при температурах до 600 °С, при этом необходима предварительная очистка разделяемой газовой смеси от серосодержащих соединений, окиси углерода, галогеивдов и других примесей, которые способны образовывать с металлами устойчивые химические соединения (гидриды, карбиды, нитриды, оксиды), снижающие скорость диффузии. Следует помнить, что при более низких температурах, помимо снижения коэффициента диффузии, падает скорость диссоциации газа и химическая стадия процесса проницания становится лимитирующей. [c.119]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    К квазиравновесн ,1м плазмохимическим процессам относят пиролиз углеводородов, хлоруглеродов, фторуглеродов в органической химии, получение оксидов азота, восстановление элементов из руд, оксидов, хлоридов, получение тугоплавких соединений (карбидов, нитридов, оксидов) в неорганической химии. Эти процессы осуществляют при температуре 1000-5000 К и давлении, близком к атмосферному. [c.174]

    И еще один пример. Наряду с соединениями постоянного состава (характеризующимися целочисленными стехио-метрическими коэффициентами), для которых справедливы законы постоянства состава и кратных отношений, существуют соединения переменного состава (многие оксиды, сульфиды, карбиды, нитриды и т. д.). Так, карбид циркония имеет состав не 2гС (в соответствии с местом элементов-партнеров в периодической системе элементов), а 2гС1—х, где X в границах области непрерывного изменения состава меняется в широких пределах, К подобным выводам можно прийти не только на основании изучения структуры, но и в результате термохимических исследований, так как в соответствии с непрерывным изменением состава будет непрерывно меняться и теплота образования таких солей. [c.29]


    Модифицирование железо-углеродистых сплавов применяют для получения. ме таозернистой структуры. Модификаторы вь]полняюг роль центров кристаллизации, от которых начинается рост зерен, И.ми являются мелкодисперсные частички тугоп.лавких химических элементов или их соединений (карбиды, нитриды, оксиды) [13], Фракционирование молекул по размерам [c.21]

    Для целей повышения поверхностноГ) прочности изделий применяют композиционные электрохимические покрытия (КЭП) на основе никеля с включениями частиц второй фазы, роль которой выполняют оксиды, карбиды, нитриды и другие соединения металлов, например КЭП никель-карбид кремния с размером частиц второй фазы 3—10 мкм. Такие покрытия имеют повышенные значения микротвердости, предела прочности, износостойкости, а также защитной способности. [c.39]

    КИ, периодический закон и основанная па нем периодическая система элементов Д. И. Менделеева. Главной задачей Н. х. является установление строения химических элементов, изучение состава и свойств соединений в связи со строением, установление строения молекул. Другая важнейшая задача Н. х.— разработка и научное обоснование способов создания новых материалов с нужными для современной техники свойствами. Одним из основных направлений Н. х. в XX в. явилось изучение химии комплексных соединений, а также изучение соединений, в которых атомы проявляют [ алентность, не подчиняющуюся классическим представлениям,— гидридов, карбидов, нитридов, боридов, карбонилов и др. В Н. X. широко применяются два основных метода химического исследования — синтез и анализ. Всего к середине XX в. было изучено около 00 тыс. неорганических соединений. Новый этап в развитии И. х. наметился в последние годы в связи с развитием ядерных исследований, новой техники, требующей новых материалов с нужными для современной техники свойствами. [c.173]

    Кроме кристаллических оксидов атомную структуру имеют карбиды, нитриды, борнды, фосфиды, сульфиды и др. [c.34]

    Из тех данных, с которыми мы познакомились при характеристике типов связи, следует, что специфика химической связи является важнейшим фактором, определяющим физико-химические свойства веществ (см. 5.10). Так, комплекс свойств металлических тел глубоко взаимосвязан с металлической связью. Многие свойства сплавов и соединений металлов d- и /-элементов (гидридов, бори-дов, карбидов, нитридов, оксидов и др.) не могут рассматриваться без учета возможной у них доли металлической связи. Сравнительно легко отличить свойства соединений с преобладанием ковалентной или ионной связи. К соединениям ковалентного типа относятся углеводороды, разнообразные другие органические вещества, СиО,, P I3, P I5 и т. п. Значительная доля ковалентной связи содержится в молекулах галогенидов, оксидах и сульфидах переходных металлов. [c.124]

    Для элементов подгруппы хрома характерно образование разнообразных соединений с неметаллами металлических гидридов, боридов, карбидов, нитридов, оксидов, галогенидов и других веществ (силицидов — faSi, MOjSia, сульфидов — r Sa, MoSa.WS,). [c.379]

    Периодический закон — научная основа и метод многочисленных исследований. Назовем некоторые направления (темы), которые еще ждут дальнейших исследований. Это работы но теории химической связи и электронной структуры молекул химия комплексных соединений, включая редкоземельные элементы, а также соединения, имеющие полупроводниковый характер получение гю-лупроводниковых материалов, развитие химии твердого тела, синтез твердых материалов с заданным составом, структурой и свойствами поиски новых материалов на основе твердых растворов изоморфных боридов, карбидов, нитридов и оксидов переходных металлов IV и V групп получение сплавов и катализаторов на основе переходных элементов синтез неорганических веществ, включая неорганические полимеры получение веществ высокой [c.427]

    Полусоли, или селоиды, — соединения, разделяющиеся на два подкласса металлоподобные полусоли — соединения металлических элементов с промежуточными или нетипичными окислительными элементами (например, гидриды, бориды, карбиды, нитриды, силиды, фосфиды, аренды металлов) кислотообразующие полусоли — соединения окислительных элементов с нетипичными металлическими или промежуточными элементами (например, тригалиды галлия, индия, [c.52]

    И еще один пример. Наряду с соединениями постоянного состава (характеризующимися целочисленными стехиомет-рическими коэффициентами), для которых справедливы законы постоянства состава и кратных отношений, существуют соединения переменного состава (многие оксиды, сульфиды, карбиды, нитриды и т. д.). Так, карбид циркония имеет состав не 2гС (в соответствии с местом элементов-партнеров в периодической системе элементов), а 2гС1 , где X в границах области непрерывного изменения состава меняется в широких пределах. К подобным выводам можно [c.31]

    Необходимо отметить, что бпльпптство соедппсипн, особенно оксиды, гидриды, карбиды, нитриды, сульфиды, относится к веществам несгехнометрпческого состава. Очень часто небольщое изменение в стехиометрии приводит к значительным изменениям в свойствах веществ, особенно в цвете, в электрической проводимости и ее типе (электронная, дырочная), параметрах криста,яличе-ской решетки, плотности и т. д. Например, незначительные изменения в содержании кислорода и внедрение [c.94]

    Перспективным. в этом отношении являются исследования, направленные на получение новых интерметаллидов, соединений металлов с неметаллами типа карбидов, нитридов, оксикарбидов, карбонитридов, силицидов, фосфидов и их оксиформ, металлокомплексов, в том числе кластеров комплексонатов и т. д. [c.275]

    Структура неорганических веществ отличается большим многообразием в зависимости от природы и числа частиц, входящих в кристаллическую решетку. При этом частицы одного вида соединяются друг с другом посредством металлической связи (элементы левой части таблицы Д. И. Менделеева), ковалентной связи с образованием полимерного каркаса (элементы середины таблицы), связи частично ионной и частично ковалентной (некоторые элементы П1, IV и V групп таблицы Д. И. Менделеева), ковалентной связи с образованием отдельных молекул и ван-дер-ваальсовых сил между этими молекулами. При наличии в составе соединения частиц двух видов связь между ними может быть ионной или близкой к ней при значительной разности электроотрицательностей между элементами (фториды, хлориды, ряд оксидов) при малой разности электроотрицательностей — преимущественно ковалентной (SO2, СО т. д.), а также связью, сочетающей признаки и ионной, и ковалентной (большинство оксидов, карбиды, нитриды, бо-риды, силициды). При наличии же в составе соединения трех и более элементов картина может быть еще более сложной. Отдельные элементы за счет преимущественно ковалентной связи между ними могут образовать самостоятельные структурные группировки — радикалы типа SO42-, Si04 -, А104 и т. д., остальные же элементы вследствие передачи своих электронов этим радикалам могут связываться с ними посредством преимущественно ионной связи (Na+, Са2+, АР+ и т. д.). Более того, могут возникать группировки в виде цепей, лент, слоев и даже каркасов, имеющих заряды, равномерно локализованные по фрагментам этих группировок, связанных друг с другом через катионы металлов. Б случае же незаряженных структурных единиц, например слоев у некоторых глинистых минералов, связь между слоями является ван-дер-ваальсо-вой, или водородной. [c.25]

    Электрические свойства карбидов, нитридов, боридов и силидов указывают на то, что образование ковалентных связей электронами -подуровня и электронами присоединяющегося атома (С, 81, В, Ы) одновременно может возбуждать часть электронов, которые обусловливают металлическую элекгропровод-ность. Вещества с металлической проводимостью или металлообразные вещества образуют, как правило, соединения металлов с неметаллами, которые имеют близкие значения ионизационных потенциалов. [c.110]

    Марганец, обладая более устойчивым строением валентного слоя электронов (d s ), в меньшей степени склонен к образованию металлообразных соединений. Марганец и рений образуют только силиды, обладающие металлической электропроводностью, а карбиды, нитриды и бориды этих металлов электропроводностью такого типа не обладают. [c.123]

    Как правило, -элементы не дают бинарных соединений определенного состава с водородом (кроме I, II и III групп). Весьма характерны для них карбиды, нитриды, фосфиды, бориды и т. п. Переходные элементы могут образовывать соединения, не имеющие аналогов среди соединений непереходных элементов, типа [Ре(СО)5]2, [Fe( 0)2(N02)], K[Nb( 0)5], Ks [Fe( N)sNO], (я-С.5Н5)2ре. Для тяжелых переходных 5 -элeмeнтoв характерны кластерные соединения, в которых наряду с ковалентными связями имеют место связи металл—металл (М—М) типа (ТабС1б)2С12- [c.499]

    Строго говоря, в металлохимии следует рассматривать лишь интерметаллические фазы (соединения, растворы и т. п.), которые всегда обладают металлическим характером. Однако сюда целесообразно включать и металлидные фазы, образованные в результате взаимодействия металлов с неметаллами (некоторые карбиды, нитриды, бориды, субоксиды и т. п.). Свойства этих фаз в значительной мере определяются именно металлическим компонентом. [c.366]

    К числу фаз, возникновение которых определяется соотношением атомных размеров компонентов, относятся и так называемые фазы внедрения. Как и твердые растворы внедрения (см. гл. IX, 87), они образуются при взаимодействии металлов и легких неметаллов (бор, углерод, азот, кислород, водород) . Образогание ме-таллидных фаз внедрения (карбидов, нитридов и т. п.) характерно только для переходных металлов с дефектными d- и f-оболочками. При низких концентрациях неметалла наблюдается простое раство- [c.382]


Смотреть страницы где упоминается термин Бор, карбиды, нитриды: [c.297]    [c.108]    [c.122]    [c.53]    [c.3]    [c.284]    [c.42]    [c.111]    [c.365]   
Химия (1986) -- [ c.406 ]

Химия (1979) -- [ c.417 , c.420 ]




ПОИСК





Смотрите так же термины и статьи:

Бориды, карбиды и нитриды железа

Бориды, карбиды, нитриды, силициды

Бориды, карбиды, силициды, нитриды и фосфиды урана

Галиды . 68 Нитриды и карбиды

Зонная структура и химическая связь в карбидах и нитридах

Карбиды железа, гексагональный приготовление из окиси углерода и нитридов

Карбиды и нитриды со структурой фаз внедрения

Карбиды, нитриды, галогениды, сульфиды и фосфиды кремния

Карбиды, нитриды, сульфиды и подобные им бинарные соединения

Карбиды, силициды, нитриды, фосфиды и арсениды

Котельников. К вопросу об образовании непрерывных рядов твердых растворов в системах из боридов, карбидов, нитридов и силицидов переходных металлов

Кристаллические структуры карбидов и нитридов

Нитриды

Носители карбиды и нитриды

Полиметаллические катализаторы карбиды и нитриды

Реакции с образованием окислов, нитридов и карбидов

Структура боридов, карбидов, нитридов и силицидов

Сульфиды, нитриды, карбиды

Термодинамика тугоплавких карбидов и нитридов

Титана карбид и нитрид

Тугоплавкие соединения дибориды, дисилициды, карбиды, нитриды, окислы

Химическая связь в тугоплавких боридах, карбидах, нитридах и силицидах

Электронно-валентная модель тугоплавких карбидов и нитридов. П. В. Гельд



© 2024 chem21.info Реклама на сайте