Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сурьма модификации

    Неметаллическая модификация сурьмы желтая сурьма) еще менее устойчива, чем желтый мышьяк. У висмута же неметаллическая модификация неизвестна вообще. [c.380]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, но хрупки. Они изоморфны, имеют слоистую структуру (рис. 163) типа черного фосфора. Каждый из атомов пирамидально связан с тремя соседними по слою и имеет трех ближайших соседей в другом слое. В ряду Аз — 8Ь — В1 различие межъядерных расстояний внутри и между слоями уменьшается (0,063—0,050—0,037 нм), т. е. происходит постепенно приближение к характерному для металлических структур равенству межъядерных расстояний. Благодаря близости параметров кристаллических решеток сурьма образует твердые растворы с мышьяком и висмутом, но последние друг с другом их не образуют. [c.380]


    Это сходство с металлами указывает, что валентные электроны в германии не связаны с атомами столь прочно, как можно было бы ожидать для настоящего ковалентного каркасного кристалла. Мыщьяк, сурьма и селен существуют в одних модификациях в виде молекулярных кристаллов, а в других модификациях - в виде металлических кристаллов, хотя атомы в их металлических структурах имеют относительно низкие координационные числа. Известно, что теллур кристаллизуется в металлическую структуру, но довольно вероятно, что он может также существовать в виде молекулярного кристалла. Положение астата в периодической таблице заставляет предположить наличие у него промежуточных свойств, однако этот элемент еще не исследован подробно. [c.607]

    Предложены многочисленные модификации серебряного катализатора для окисления этилена. В качестве носителей указаны пемза, силикагель, оксид алюминия, смеси силикагеля и оксида алюминия, карбид кремния и др. Как активаторы и добавки, повышающие селективность, рекомендованы сурьма, висмут, пероксид бария. Интересно, что введение небольшого количества дезактивирующих примесей (сера, галогены) увеличивает селективность действия серебра, причем эти вещества лучше добавлять в реакционную смесь непрерывно, возмещая их расход на окисление. Практическое значение приобрела добавка 0,01—0,02 масс. ч. дихлорэтана на 1 масс. ч. этилена с такой добавкой селективность процесса повышается примерно на 5%. [c.434]

    Сурьмы окись (кубическая модификация). .......... [c.690]

    Опишите строение неметаллических и металлических модификаций азота, фосфора, мышьяка, сурьмы и висмута. [c.73]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, [c.424]

    Азот образует двухатомные молекулы с кратной и очень прочной связью и с очень коротким расстоянием между атомами (0,109 нм). Белый фосфор построен из тетраэдрических молекул (Р4), в которых отсутствуют связи повышенной кратности за счет рп—рл-связывания. Фосфор имеет три основные полиморфные модификации. Сведения о структурах и свойствах этих модификаций фосфора приведены в табл. В.ЗО. Белый фосфор переходит в красный при 400 °С. У мышьяка и сурьмы известны также металлоподобные модификации. [c.530]

    Обычная устойчивая металлическая модификация сурьмы имеет серебристый блеск, проводит электрический ток, хрупка, ее можно растирать в ступке. Желтая аллотропическая юрма сурьмы аналогична мышьяку, но менее устойчива и легко превращается в металлическую сурьму. [c.306]


    Изменения стандартных энтальпий образования АЯ в черной и серой аллотропных модификаций сурьмы равны —167,0 и —169,4 ккал/г-атом, соответственно. Вычислить изменение энтальпии аллотропного перехода ЗЬ (черная) 5Ь (серая). [c.187]

    Мышьяк Аз, сурьма ЗЬи висмут В1 как простые вещества имеют несколько модификаций. В ряду Аз—5Ь—В1 уменьшается устойчивость неметаллических модификаций и возрастает устойчивость металлических. [c.279]

    Как и фосфор, мышьяк образует в парах молекулы Аз4. При охлаждении паров мышьяка образуется полуметаллическая модификация — желтый мышьяк, растворимый, как и белый фосфор, в сероуглероде. На свету желтый мышьяк переходит в серый. Серый мышьяк — металлическая модификация Аз. Желтая сурьма еще менее устойчива, чем желтый мышьяк. Висмут же полуметаллической модификации вообще не имеет. [c.279]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический блеск и характеризуются электронной проводимостью, но их хрупкость напоминает хрупкость неметаллов. [c.279]

    Металлические модификации мышьяка, сурьмы и висмута не окисляются кислородом воздуха и устойчивы по отношению к воде. [c.280]

    Структура элементных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближайших соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8—IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8—VI). [c.341]

    УА-группу составляют пять элементов азот Ы, фосфор Р, мышьяк Аз, с у р ь м а 8Ь и в и С М у т В1. Наличие пяти электронов на внещнем энергетическом уровне их атомов (rts np ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную —3. Однако по мере увел чения числа энергетических уровней в атоме и особенно при проявлении экранирующего ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200°С и 1,2 ГПа (12 000 атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства и, наконец, висмут — металл, проявляющий хрупкость, что характерно для неметаллических кристаллов. Усиление металлических черт в характере элементов явно проявляется в значениях ширины запрещенной зоны (см. рис-. 28) для кристаллов простых веществ, образованных ими. Так, (Для черного фосфора А =1,5 эВ, для серого мышьяка 1,2 эВ, для серой сурьмы 0,12 эВ, а висмут является проводником электричества. [c.251]

    В своей устойчивой модификации мышьяк — серебристо-серое вещество, свежий излом которого блестит, но быстро тускнеет сурьма выглядит как металл серо-белого цвета со слабым синеватым оттенком, обусловленным примесями а висмут — блестящий белый металл, имеющий розоватый оттенок. Серый мышьяк — полупроводник серая сурьма и висмут обладают небольшой электрической проводимостью. Все они обладают хрупкостью, что объясняется слоистой структурой их кристаллов, образуемой атомами этих элементов, объединенных в плоскостные разветвленные макромолекулы (см. рис. 32,6). [c.268]

    Физические свойства. При конденсации пара мышьяка, состоящего из молекул Аз , образуется неметаллическая малоустойчивая модификация — желтый мышьяк, который легко переходит (особенно при действии света и при нагревании) в серый мышьяк — металлическую модификацию. Неметаллическая модификация сурьмы (желтая сурьма) еще менее устойчива, чем желтый мышьяк, а для висмута неметаллическая модификация неизвестна. [c.357]

    Простые вещества. Физические и химические свойства. В свободном состоянии мышьяк, сурьма и висмут представляют собой твердые кристаллические вещества с металлическим блеском серебристобелого цвета (Аз), с голубоватым отливом (5Ь) или красноватым оттенком на изломе (В1). При обычных условиях они образуют слоистые кристаллические решетки ромбоэдрического типа (а-модифи-кации). Каждый атом имеет трех ближайших соседей в пределах одного гофрированного слоя (к. ч. 3) и трех более удаленных соседей из следующего слоя. При переходе от мышьяка к висмуту различие в длинах связей внутри слоев и между слоями уменьшается и слоистый характер структуры нивелируется. Однако координационные числа всех трех элементов в а-ромбоэдрических модификациях подчиняются правилу Юм-Розери 8—IV. [c.285]

    Таким образом, в отличие от висмута, который обладает преимущественно металлическими свойствами, мышьяк и сурьма в некоторых модификациях являются полупроводниками и даже диэлектриками. [c.285]

    Некоторые полиморфные модификации мышьяка и сурьмы являются ковалентными полупроводниками. [c.365]

    В аморфных модификациях мышьяка и сурьмы, которые являются полупроводниками, атомы образуют двойные слои, причем каждый атом одного слоя имеет трех соседей во втором слое — по числу ковалентных связей, осуществляемых тремя р-электронами внешнего уровня (рис. 50). Двойные слои образуют очень мелкие беспорядочно расположенные чешуйки, что и придает аморфный характер этим веществам. Расстояние между атомами разных слоев велико (3,75 А в обоих веществах) между этими слоями действуют силы Ван-дер-Ваальса, тогда как между соседними атомами одного двойного слоя расстояния равны 2,5 А у мышьяка, 2,87 А у сурьмы и между ними действуют силы ковалентной связи. Упорядочение двойных слоев, наблюдаемое при переходе аморфных фаз в кристаллические, резко уменьшает расстояние между атомами разных слоев (от 3,75 до 3,15 А у Аз и от 3,75 до 3,37 А у ЗЬ), возникает и возможность перекрывания электронных облаков между ними (металлизация связей). У каждого атома появляются еще три соседа в другом слое, и окружение приближается к октаэдрическому с координационным числом 6. У висмута три первых соседа находятся на расстоянии 3,10 А, а три вторых соседа — на немного большем расстоянии (3,47 А). Металлизация связей [c.133]


    Обычные (серые) модификации мышьяка и сурьмы металлические, кристаллические. Некоторые их модификации имеют полупроводниковые свойства. Висмут известен только в одной металлической модификации (гл. IV, 5). [c.301]

    Простые вещества. Физические и химические свойства. В свободном состоянии мышьяк, сурьма и висмут представляют собой кристаллические вещества с металлическим блеском серого цвета (Аз), с голубоватым отливом (8Ь) или красноватым оттенком на изломе (В1). При обычных условиях они образуют слоистые кристаллические решетки ромбоэдрического типа (а-модификации). [c.419]

    Для мышьяка и сурьмы кроме а-формы известны и другие полиморфные модификации. Так, при конденсации пара мышьяка на охлаждаемой жидким азотом поверхности образуются желтые, мягкие, как воск, кристаллы кз бической сингонии, подобные белому фосфору. Превращение желтого мышьяка в стабильную о -ромбоэдрическую форму обычно протекает через стадию образования так называемого черного мышьяка, также похожего на аналогичную модификацию фосфора. При 290°С черный мышьяк превращается в обычный серый металлический мышьяк. Аналогичные превращения наблюдаются и у сурьмы. [c.419]

    Свойства. Мышьяк образует несколько аллотропных модификаций, наиболее устойчивой является серый, или металлический, мышьяк —серебристо-серое кристаллическое вещество с металлическим блеском. Сурьма — серебристо-белый металл, а висмут — серебристый металл с красноватым оттенком. [c.162]

    Для получения огнестойких алкидных смол предложено вводить в них сурьму Модификация алкидных смол достигается и введением в их состав производных металлов IV группы (например бутилтитаната) 2950,2957 бутилата алюминия 295в металло-органических соединений типа Ме(ОК) или МеК п (где Ме — N1, 2п, Со, А1, Т1, п — валентность, Н или К — углеводородный алифатический или ароматический радикал) 959 )Каростойкость алкидных смол может быть повышена путем введения в сферу поликонденсации при синтезе полимера НзВОз . [c.221]

    При проведении опытов использовали также трехокись сурьмы модификации сенормантит, кристаллиты которой имели размер [c.28]

    Предложены различные модификации серебряного катализатора. В качестве носителя используют пемзу, силикагель, окись алюминия и карборунд. Для повышения селективности в катализатор вводятся добавки сурьмы, висмута, окиси бария и др. Для частичного подавления реакций глубокого окисления в исходную газовую смесь добавляют галогенные соединения, например дихлорэтан или другие хлор- и серусодержащие органические соединения, в количестве сотых долей от содержания этилена в смеси. [c.204]

    Нанесение подслоя никеля перед электролитическим оловяни-рованием замедляет иглообразование и улучшает паяемость олова. Известно также, что при очень низкой температуре (—10 ""С и ниже) олово подвержено аллотропическому превращению из р-модификации (белое компактное олово) в а-модифи-кацию —серое порошкообразное олово. Путем оплавления, а также легирования добавками висмута и сурьмы ( 0,3%) это явление устраняется или задерживается. [c.388]

    Свойства. Мышьяк и сурьма имеют ряд аллотропных модификаций. Наиболее устойчипы металлические формы серого (М) и серебристо-белога (ЗЬ) цвета. Это хрупкие веицества, легко измельчаемые в ступке в порошок. Висмут - металл серебристо-белого цвета с едва заметным розовым оттенком. Он менее хрупок, чем сурьма, но и он легко разбивается при ударе молотка. Висмут - одно из немногих веществ, плотность которых в жидком состоянии больше, чем в твердом. Некоторые свойства элементных А , ЗЬ и В1 указаны в табл. 3.5. [c.422]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    УА-группу составляют пять элементов азот N. фосфор Р, мышьяк Аз, сурьма 8Ь и висмут В1. Наличие пяти электронов на внешнем энергетическом уровне их атомов (пз пр ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную -3. Однако по мере увеличения числа энергетических уровней в атоме и особенно при проявлении экранируюш его ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200 °С и 1,2 ГПа (12 ООО атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства [c.335]

    Для мышьяка и сурьмы кроме а-формы известны и другие полиморфные модификации. Так, при конденсации пара мышьяка на охлаждаемой жидким азотом поверхности образуются желтые, мягкие, как воск, кристаллы кубической сингонии, подобные белому фосфору. Превращение желтого мышьяка в стабильную -ромбоэдрическую форму обычно протекает через стадию образования так называемого черного мышьяка, также похожего на аналогичную модификацию фосфора. Если желтый мышьяк — диэлектрик, то черный обладает полупроводниковыми свойствами (АЕ = = 1,2 эВ). При 290 °С черный мышьяк превращается в обычный серый металлический мышьяк. Аналогичные превращения наблюдаются и у сурьмы. Желтая сурьма получается при пропускании воздуха через сжиженный ЗЬНз. Эта модификация чрезвычайно нестабильна и уже при 50 °С превращается в обычную серую металлическую сурьму. Черную сурьму получают конденсацией пара сурьмы на охлаждаемых подложках. Как и черный мышьяк, она обладает полупроводниковыми свойствами (АЛ =0,12 эВ), но сохраняет пх лишь до О С. Для висмута полиморфные модификации неизвестны. [c.285]

    Если учесть, что разница между полупроводниками и диэлектриками только количественная, то можно сказать, что наличие только металлической связи между атомами исключает полупроводниковые свойства вещества (из этого не надо делать вывода о том,что в обычных условиях металлическая составляющая связи в полупроводниках полностью отсутствует). Для полупроводников типичны ковалентные и ионно-ковалентные связи. Музер и Пирсон отмечают, что в составе всех известных неорганических полупроводников всегда есть неметаллические атомы какого-либо из элементов IVA — VIIА подгрупп. Зонная теория не объясняет этого факта. Собственно полупроводниками являются элементарные вещества этих групп (углерод, кремний, германий, а-олово, некоторые модификации 4юсфора, мышьяка, сурьмы, селен, теллур). Сюда надо отнести и бор. Некоторые черты полупроводниковых свойств имеют сера и иод. Слева и снизу от этих элементов в системе находятся металлы, а выше и правее — типичные диэлектрики. [c.255]

    Фосфор, мышьяк, сурьма, висмут 1 некоторые их соединения У фосфора известны три аллотропические модификации белый (молекулы Р4), красный, черный. Белый фосфор плавится при 44,1° С, легко окисляется в обычных условиях до PgOg, затем до Р2О5. При окислении происходит свечение. Может самовоспламеняться на воздухе. Хранят его под водой. Очень ядовит. При нагревании без доступа воздуха превращается в красный фосфор — менее ядовитый, химически более пассивный и плавящийся только при 260° С. Важнейший потребитель красного фосфора спичечная промышленность. Черный фосфор — самая плотная (полупроводниковая) модификация. [c.301]


Смотреть страницы где упоминается термин Сурьма модификации: [c.336]    [c.368]    [c.336]    [c.330]    [c.509]    [c.471]    [c.268]    [c.234]    [c.164]   
Курс неорганической химии (1963) -- [ c.714 ]

Неорганическая химия Том 1 (1971) -- [ c.479 , c.480 ]

Курс неорганической химии (1972) -- [ c.639 ]




ПОИСК







© 2025 chem21.info Реклама на сайте