Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимерно-аналогичные превращения

    Полимерно-аналогичные превращения [c.162]

    В связи с этим полимерные простые виниловые эфиры практически синтезируют только полимеризацией мономеров, тогда как в синтезе поливинилацеталей преимущественное значение имеет полимер-аналогичное превращение поливинилового спирта. [c.295]

    Химические процессы, протекающие без нарушения целостности молекул, называются полимерно-аналогичными превращениями. Возможность таких превращений пока еще ограничена, тем не менее в некоторых случаях их удается провести. [c.162]


    Полимерно-аналогичные превращения имели очень большое значение для выяснения вопроса о строении высокомолекулярных соединений. Действительно, если макромолекула является цепью, в которой все звенья связаны силами главных валентностей, то при определенном режиме проведения химической реакции, связанной с химическими превращениями функциональ- [c.162]

    Для доказательства макромолекулярного строения полимеров было проведено полимерно-аналогичное превращение поливинилацетата в поливиниловый спирт и обратно. Раствор поливинилацетата в диоксане при перемешивании медленно приливали к раствору щелочи омыление наступало сравнительно быстро. Ввиду того что поливиниловый спирт в момент образования очень. легко окисляется кислородом воздуха, опыт проводили в атмосфере азота для предотвращения деструкции цепи. Полученный поливиниловый спирт был обратно переведен в поливинилацетат действием смеси уксусной кислоты и уксусного ангидрида в пиридине (20 дней при 60°). [c.163]

    Синтезы полимеров обычно осуществляют на основе реакций двух типов полимеризации и поликонденсации. Кроме того, некоторые виды полимеров получают с помощью метода полимер-аналогичных превращений, основанного на химических превращениях готовых полимерных соединений. [c.310]

    Так как полимерным дисперсиям в органических жидкостях свойственны явные преимущества при получении поверхностных покрытий по сравнению с водными дисперсиями или растворами в органических растворителях, то для их получения использовали косвенные методы. Все эти методы состоят в превращении полученного полимера различными способами в более или менее дисперсную форму (см. раздел V). Однако такие свойства дисперсий, полученных этими методами, как размер частиц, устойчивость и вязкость, не являются в достаточной степени удовлетворительными для их основного применения при получении поверхностных покрытий. В идеальном случае необходим метод, аналогичный эмульсионной полимеризации, но которому полимерная дисперсия с контролируемым размером частиц могла бы быть получена непосредственно в гетерогенном процессе, причем непрерывная фаза должна быть органической, а не водной. [c.11]

    Существует много типов изомерии, однако подвергаются изомеризации преимущественно полимеры, содержащие двойные связи. Хотя и для насыщенных полимеров встречаются примеры структурных перегруппировок, аналогичных превращениям, происходящим в простых насыщенных углеводородах, как, например, перегруппировки, связанные с миграцией групп, актами разветвления или некоторыми реакциями сшивания,— все эти примеры являются более или менее тривиальными случаями изомеризации и не требуют специального рассмотрения в настоящей главе. В соответствии с основной темой обсуждение будет ограничено рассмотрением изомеризации ненасыщенных полимеров. Обменные реакции полимерных сложных эфиров, полиамидов, полисульфидов и силиконов, хотя и относятся в какой-то мере к реакциям изомеризации, не будут рассматриваться в данном разделе. Тем не менее эти реакции будут описаны в главе VIT. Аналогичным образом пе будет обсуждаться явление полиморфизма, при котором происходит взаимопревращение различных модификаций данной кристаллической структуры, например а- и Р-форм гуттаперчи. [c.104]


    Большинство природных и технологических процессов, протекавших вокруг нас, связаны с химическими превращениями многокомпонентных систем, состоящих из большого числа соединений. По-видимому, в природе существуют два типа многокомпонентных систем с более-менее четко выраженной степенью детерминированности и многокомпонентные стохастические системы (МСС) со случайным распределением компонентного состава [1-28]. К МСС относятся, прежде всего, геохимические объекты [1-6], каустобиолиты [7-11], нефти, торфы, природные газы, газоконденсаты, асфальты. Во-вторых, к этой группе принадлежат техногенные системы нефтепродукты и фракции нефтей [12,13], -продукты переработки твердого топлива [14], техногенные углеводородные газы [15-20], углеводородные масла и топлива [16,17], нефтяные асфальтены и смолы [22,23], продукты полимеризации многокомпонентных мономерных и олигомерных систем [23-25], полимерные смеси, продукты термо- или фотодеструкции органических веществ [26,27] и т. д. К аналогичным системам относится вещество межзвездных газопылевых туманностей [27], продукты метаболизма живого вещества [28] и геохимические системы биоценозов, например, почвы [1-3]. [c.5]

    Одной из причин остановки роста макромолекул в процессе поликонденсации является и обрыв за счет взаимодействия ее концевых групп с монофункциональными веществами аналогичной химической природы, находящимися в реакционной смеси. Монофункциональные вещества могут или специально вводиться в реакцию с целью регулирования молекулярной массы образующегося полимера, или попадать в сферу реакции в виде примесей к основным реагентам, растворителю, или образовываться в ходе процесса за счет побочных превращений функциональных групп как мономеров, так и растущих полимерных цепей. [c.88]

    Значительную склонность к образованию неравновесных систем с развитым переходным слоем имеют системы, получаемые в виде пленок из раствора. В этом случае, формирующаяся всей совокупностью процессов взаимодействия полимера и растворителя, физическая структура образцов, наряду с химическим строением цепей второго полимера, может оказывать влияние на скорость деструктивных превращений полимеров даже после полного удаления растворителя. Предыстория формирования полимерной композиции (химическая природа и термодинамическое качество растворителя в отношении каждого из полимеров, исходная концентрация раствора, соотношение компонентов, тип фазовой диаграммы) сказывается на ряде характеристик полимерной смеси -способности компонентов к взаиморастворимости, изменению конформационного состояния макромолекул каждого полимера, релаксационных свойствах образца. Все это в результате отражается на кинетике химических превращений полимеров. В пользу этого свидетельствуют данные по деструкции пленочных образцов ПВХ в смеси с СКН-18, полученных из совместного раствора в ДХ. Как видно из рис. 3, с ростом концентрации исходного раствора смеси полимеров наблюдается закономерное увеличение скорости деструкции ПВХ. Обращает на себя внимание факт, что при одном и том же содержании нитрильного каучука в смеси скорость дегидрохлорирования ПВХ в пленках, полученных из 1% и 5% растворов, различается в 2 раза. Аналогичным образом ведут себя и смеси ПВХ с СКН-26 и СКН-40, полученные в виде пленок. Изотермический отжиг пленок из смесей полимеров при температуре, превышающей ПВХ, приводит к значительному уменьшению значений скоростей дегидрохлорирования ПВХ в смеси, однако даже после длительного отжига сохраняется различие в значениях [c.251]

    Хотя методами получения полимерных дисперсий в воде путем полимеризации мономеров, эмульгированных или суспендированных в среде, пользуются уже несколько десятилетий [1], аналогичный непосредственный метод получения устойчивых полимерных дисперсий в органических жидкостях (органодисперсий) путем дисперсионной полимеризации стал развиваться сравнительно недавно [2, 3]. В качестве альтернативы для получения полимерных органодисперсий использовали и косвенные методы, каждый из которых включает превращение полимера, полученного различными способами, в более или менее дисперсную форму в органических жидкостях (табл. V.1). [c.223]

    В значительной степени эти успехи были достигнуты благодаря подходу к макромолекулам как к привычным реагентам, т. е. как к объектам, содержащим те или иные конкретные химические группировки, а значит, и способным в принципе к тем или иным конкретным химическим превращениям. Между тем даже простое соображение о том, что ансамбль однотипных звеньев (не говоря уже о разнотипных) может вести себя не совсем так, а иногда и совсем не так, как сумма малых молекул аналогичного строения, по отношению к другому, низкомолекулярному, а тем более макро-молекулярному реагенту, что макромолекулярным цепочкам как реагентам гораздо в большей степени присущи химические последствия , обусловленные их гибкостью, возможностью изменения конформаций, заставляет признать, что требуется специальный подход к разработке самой теории реакционной способности макромолекулярных объектов. Отсюда возникает необходимость физико-химического подхода к оценке и обобщению уже существующего достаточно обширного экспериментального и теоретического материала по изучению макромолекулярных реакций с точки зрения полимерной природы реагирующих частиц. [c.6]


    Химические превращения в цепях — это не просто область синтеза новых высокомолекулярных соединений, хотя такой подход и очень важен для химика-практика, но область, тесно связанная с проблемами реакционной способности макромолекул и их функциональных групп. При рассмотрении макромолекулярных реакций следует ясно представлять себе, как ведет себя макромолекула — ее химическую индивидуальность, в чем могут проявляться и проявляются специфические особенности ее химического поведения по сравнению с низкомолекулярными веществами аналогичного строения. Речь идет, по существу, о том, насколько вправе химик-исследователь переносить известные представления и закономерности из мира реакций низкомолекулярных органических веществ в область макромолекулярных реакций. Выявление существующих различий в этих реакциях и обнаружение специфических закономерностей (буде они проявятся) химических превращений макромолекул необходимо для целенаправленной химической модификации полимерных материалов и управления этими процессами. [c.14]

    Тем же способом были проведены полимерно-аналогичные превращения (с сохранением молекулярного веса) крахмала в его метиловый эфир, полистирола в полигидростирол, полиакрилового эфира в полиакриловую кислоту, ацетилцеллюлозы в целлюлозу и обратно. [c.163]

    Полиаллиловый спирт можно получить, так же как и поливиниловый спирт, путем полимерно-аналогичного превращения сложных полиаллиловых эфиров. Так, например, полиаллиловый спирт был получен кислотным и щелочным гидролизом полиаллилацетата и полиаллилхлорацетата, имеющих степень полимеризации 11—13. В обоих случаях полиаллиловый спирт обладал растворимостью в воде, чем существенно отличался от полимера, полученного методом непосредственной полимеризации аллилового спирта в присутствии кислорода. Количество гидроксильных групп в полимере, полученном методом полимерноаналогичного превращения, было равно 28%, что почти соответствует теоретическому содержанию гидроксильных групп в поли-аллиловом спирте (29%). [c.303]

    A. п. (V) — желтоватые прозрачные хрупкие в-ва их темп-ры размягчения колеблются в широких пределах в зависимости от способа получения. А. п.растворимы в к-тах поли-и-диметиламиностирол — в бензоле, поли-jK- и поли-и-аминостиролы —в пиридине и диметилформамиде. А. п.— слабоосновные анионообменные смолы. Они интенсивно окисляются на воздухе при 140—170 °С. Полимер аналогичные превращения А. п. открывают широкие возможности для синтеза специальных типов ионообменников, твердых нерастворимых ферментов, а также светостойких недиффундирующих (полимерных) пигментов и др. [c.56]

    Таким образом, из рассмотренного выше материала видно, что серосодержащие соединения характеризуются весьма высокой реакционной способностью и способны расщепляться как гетеролитиче-ски, так и гомолитически. Это дает основание считать их весьма перспективными для направленной модификации различных полимерных материалов. Наличие реакционноспособных дисульфидных связей в составе полимерных биомолекул позволяет надеяться на возможность вовлечения этих соединений в различные полимер-аналогичные превращения, что даст возможность конструировать гибриды синтетических и биомакромолекул. [c.189]

    Полипептвды, являющиеся стереорегулярными сополимерами, способны, аналогично другим гетероцепным полимерам, как к реакциям деполимеризации (гидролитической деструкции), так и к разнообразным полимераналогичным превращениям. Специфичность строения макромолекул белков обусловливает возможность протекания сопряженных процессов деструкции цепей и полимераналогичных превращений. Кинетика химических реакций в белках определяется не только реакционной способностью тех или иных функциональных фупп, но и всеми структурными уровнями полимерного субстрата. [c.357]

    Первая промышленная установка была построена фирмой Лурги в Нюрнберге (ФРГ) здесь гидрирование сырого бензола, получаемого перегонкой каменноугольного дегтя, осуществляют коксовым газом под давлением около 37 ат. Несколько иные условия гидроочистки используются на установках фирмы Шольвен (производительность 720 м /сутки) и Гарпенер Бергбау (производительность 201 м сутки) [52]. На этих установках очистку сырого бензола проводят водородом вместо коксового газа при 350° С и давлении 52—63 ат. Хотя применяемый катализатор точно не указан, очевидно, используется окисный металлический катализатор типа кобальт-молибденового на окиси алюминия, аналогичный применяемому при гидроочистке бензинов. В некоторых случаях сырой бензол коксования нагревают при 37 ат до 200° С в присутствии коксового газа. Пос.ле этой обработки, ведущей к удалению полимерных продуктов, сырой бензол нагревают до 350° С и пропускают через слой катализатора для превращения серы и азота соответственно в сероводород и аммиак, удаляемые последующей промывкой продукта. Затем бензол, толуол и ксилол отделяют от алканов четкой ректификацией. [c.156]

    После того как то или иное полимерное питательное вещество уже переварено (прогидролизовано) и образовавшиеся мономерные продукты проникли в клетку, обычно требуется пусковая реакция, протекающая с поглощением энергии. Например, гидролиз жиров (независимо от того, протекает ли он в просвете кишечника или внутриклеточ-но) приводит к образованию свободных жирных кислот. Прежде чем жирные кислоты примут участие в дальнейших метаболических превращениях, они присоединяются к специальному коферменту, коферментуА (СоА) с образованием СоА-производного жирной кислоты. Эта реакция требует расхода АТР, т. е. гидролиза АТР до АМР и РР (дополнение 3-А). Аналогичным образом глюкоза, попадая в клетки, превращается в эфир фосфорной кислоты — глюкозо-6-фосфат. Реакция образования глюкозо-6-фосфата также требует затраты АТР. Основные метаболические пути часто начинаются с одного из двух этих соедине- [c.81]

    Аналогично, другой традиционно используемый катализатор - серная кислота -проявляет каталитические свойства как комплексно-связанное соединение, например на сульфатах металлов [109, 110], так и в виде ковалентно присоединенных к матрице сульфогрупп, т.е. полимерных сульфокислот [114-117]. В обоих случаях чем больше количество связанной кислоты (80зН-групп) и чем сильнее ее связь с матрицей, тем выше кислотно-каталитическая активность. Обпще представления о характере действия таких катализаторов можно проиллюстрировать на примере сульфированных сополимеров стирола с дивинилбензолом. Как и для любой твердой матрицы, и в этом случае существенную роль играет проницаемость полимерной сетки, определяемая степенью сшивки, набухаемостью, размером гранул, а также другими факторами. Химическая сторона каталитического действия сульфока-тионитов связана с наличием сетки водородных связей, кооперативных эффектов и формированием ассоциатов - центров повышенной локальной концентрации кислотных групп [182,183]. Наличие остаточной воды обеспечивает необходимую подвижность протонов, динамический характер сетки и наблюдаемое в эксперименте соотношение активности и селективности действия. Встраивание субстрата в сетку предпочтительнее, чем простое взаимодействие его с поверхностью [184-186]. Учитывая низкую полярность олефинов, например изобутилена, можно предположить электрофильные превращения его в присутствии сульфокислот через промежуточное образование спирта и последующее встраивание в сетку матрицы. Ниже приведены возможные структурные элементы полимерных сульфокислот  [c.57]

    Первые стадии производства углерод-углеродного композита аналогичны изготовлению композита с полимерной матрицей. Углеродные волокна пропитывают фенолформальдегидной смолой, т.е. термореактивной смолой. Затем соответствующим образом собранные и пропитанные с. юлой волокна нафевают в инертной атмосфере. При этом происходит пиролиз смолы (обугливание, аналогичное процессу превращения дерева в древесный уголь) и остается углерод. Полученный композит снова под давлением пропитывают смолой и подвергают пиролизу. В результате многократного повторения процесса образуется прочный материал с минимальным числом внутренних пустот. [c.164]

    В случае трихлорацетонитрила тримеризацию удобно осуществлять путем нагревания нитрила совместно с хлористым алюминием 2 . При этом 2,4,6-трис-(трихлорметил)-1,3,5-триазин образуется с хорошим выходом, если предварительно приготовленные комплексы состава СС1зСЫ пА1С1з (п = 0,5, 1 и 2) нагревают при температуре 100—110 С. Повышение температуры выше 140 °С вызывает дальнейшие превращения полученного 2,4,6-три-замещенного с л л -триазина и образование полимерных продуктов реакции (стр. 379). По аналогичной методике из дихлорацетонитрила получен 2,4,6-трис-(дихлорметил)-1,3,5-триазин [c.375]

    Принимая во внимание то, что экстрагируемой формой пятивалентного молибдена из солянокислых растворов является молибденилтрихлорид (МоОС1з), а также учитывая, что аналогичные зависимости наблюдаются для различных экстрагентов при одинаковых условиях, и учитывая склонность пятивалентного молибдена к гидролизу и полимеризации, можно предположить, что зависимость экстракции пятивалентного молибдена от концентрации водородных ионов при постоянной ионной силе и постоянной концентрации ионов хлора обусловлена различными его полимерно-мономерными и гидролитическими превращениями. [c.104]

    Изменение локальной концентрации реагирующих групп вблизи макромолекулы. Если реакция протекает в гомогенном растворе, то скорость ее определяется концентрацией реагирующих групп в соответствии с законами кинетики гомофазпых реакций. Тем не менее для реакций, в которых, например, полимер выступает в качестве макромолекулярного катализатора, скорость превращения часто оказывается выше, чем этого можно ожидать, исходя из валовой концентрации реагентов, и выше, чем при реакции с участием низкомолекулярного аналога. Одним из подобных случаев является реакция гидролиза сложноэфирной связи в органических молекулах, катализируемая полимерной кислотой — полистирол-сульфокислотой (аналогичная реакция — катализ толуолсульфо-кислотой). Эта система, подробно изученная Кабановым с сотр. [51], весьма показательна для выявления полимерного эффекта. Оказалось, что в широком интервале концентраций кислот, субстрата — этилацетата и при разных температурах скорость гидролиза в присутствии полимерной кислоты существенно выше, и это различие возрастает с разбавлением системы. Поскольку значения энергии активации для обоих процессов оказались практически одинаковыми, то оставалось допустить, что причиной возрастания скорости гидролиза является увеличение стационарной концентрации протонировапной формы этилацетата в результате возрастания концентрации ведущих гидролиз гидроксониевых ионов [НзО]+ вблизи полимерных цепей. [c.27]

    Гейлорд [1] подчеркивает, что кинетика реакций полимеров определяется как реакционной способностью функциональных групп макромолекулы, так и доступностью их для низкомолекулярного реагента. С этой точки зрения он рассматривает влияние на протекание макромолекулярных реакций таких факторов, как кристалличность и ориентация цепей в полимерных реагентах, растворимость и совместимость полимеров в растворах. Действительно, как было установлено при исследовании гидролиза полиэтиленте-рефталата [5], хлорирования [6] и окисления полиэтилена [7], реакции легче протекают в аморфных участках полимеров, чем в кристаллических. Ориентация кристаллических и аморфных полимеров затрудняет доступ реагентов к функциональным группам макромолекул (в расплавах полимеров, отмечает Гейлорд, аналогичный эффект вызывается перепутанностью цепей). Степень проникновения реагентов в полимерный образец и, следовательно, скорость и глубина превращения зависят также от близости температуры реакции к температуре стеклования полимера. [c.165]

    Аналогичная методическая задача возникает также и в физико-химических исследованиях, например при изучении растворимости летучих органических соединений Б полимерных материалах, определении растворимости газов, анализе летучих продуктов деструкции, определении кинетики полимеризации при высоких степенях превращения, изучепии старения пластмасс, определении чистоты и свойств пластификаторов и т. п. Таким образом, определение летучих соедипени в полимерах — одна из распространенных аналитических задач в полимерной химии. [c.112]

    В охлаждающихся (с применением СО2) графитовых замедлителях ядерных реакторов имеет место некоторое превращение углерода, которое происходит, видимо, путем испарения, сопровождающегося разложением. В частности, разложение может происходить аналогично разложению окиси углерода в присутствии катализатора, однако более реальной кажется возможность радиолиза окиси углерода наряду с термическим разложением продуктов радиолиза СО, одним из которых является недокись углерода С3О2. Образующиеся твердые продукты имеют эмпирические формулы, мало отличающиеся от С3О2. Однако, как видно из [123], твердые продукты радиолиза не гомогенны, а представляют собой полимерный материал, в котором во взвешенном состоянии находятся графитоподобные [c.296]

    Для большинства полимерных карбкатионов и карб-анионов в той или иной степени характерны различные спонтанные реакции, приводящие к их полной дезактивации (рекомбинация с противоиопом, отщепление протона или гидрид-иона и др.) или превращению в менее активные формы (изомеризация). Скорость этих реакций и, следовательно, время жизни соответствующих М. меняются в очень широких пределах в зависимости от природы ионной группы, противоиона, растворителя и др. факторов. Обычно время жизни карбанионов выше, чем аналогичных карбкатионов. В нек-рых случаях время жизни растущих М. (в отсутствие воды, воздуха и др. активных примесей) может быть теоретически неограниченным и достигать суток и месяцев такие М. обладают рядом специфич. свойств (см. Живущие полимеры). [c.48]

    В последнее десятилетие фундаментальные результаты получены И. С. Ениколоповым с сотр. при изучении процессов образования и превращений полимеров в экстремальных условиях пластического течения под действием механического напряжения [51]. В этих условиях полимеризация мономеров в твердом состоянии протекает аномально быстро и практически без энергии активации. В частности, константы скорости роста полимерных цепей на 8—10 порядков выше аналогичных констант скоростей в жидкофазных реакциях при тех нее давлениях. [c.116]


Смотреть страницы где упоминается термин Полимерно-аналогичные превращения: [c.351]    [c.311]    [c.486]    [c.340]    [c.567]    [c.46]    [c.50]    [c.172]    [c.437]    [c.477]    [c.97]    [c.3]    [c.250]    [c.63]    [c.156]    [c.243]    [c.241]    [c.198]   
Смотреть главы в:

Химия искусственных смол -> Полимерно-аналогичные превращения




ПОИСК







© 2025 chem21.info Реклама на сайте