Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мышьяк модификации

    Простые вещества. В ряду N—f —As—Sb—Bi отчетливо на-наблюдается усиление металлических признаков простых веществ. В частности,- в этом ряду устойчивость неметаллических модификаций падает, а металлических возрастает. Мышьяк, как и фосфор, имеет несколько аллотропных форм. При быстром охлаждении пара (состоящего из молекул As ) образуется неметаллическая модификация — [c.379]


    Неметаллическая модификация сурьмы желтая сурьма) еще менее устойчива, чем желтый мышьяк. У висмута же неметаллическая модификация неизвестна вообще. [c.380]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, но хрупки. Они изоморфны, имеют слоистую структуру (рис. 163) типа черного фосфора. Каждый из атомов пирамидально связан с тремя соседними по слою и имеет трех ближайших соседей в другом слое. В ряду Аз — 8Ь — В1 различие межъядерных расстояний внутри и между слоями уменьшается (0,063—0,050—0,037 нм), т. е. происходит постепенно приближение к характерному для металлических структур равенству межъядерных расстояний. Благодаря близости параметров кристаллических решеток сурьма образует твердые растворы с мышьяком и висмутом, но последние друг с другом их не образуют. [c.380]

    Подобно фосфору, мышьяк существует в нескольких аллотропических модификациях. Наиболее устойчив при обычных условиях и при нагревании металлический или серый мышьяк. Он образует серо-стальную хрупкую кристаллическую массу с металлическим блеском на свежем изломе. Плотность серого мышьяка равна 5,72 г/см При нагревании под нормальным давлением он сублимируется. В отличие от других модификаций, серый мышьяк обладает металлической электропроводностью. [c.424]

    Символ As модификации желтый неметаллический мышьяк, серый металлический мышьяк. [c.158]

    Желтый мышьяк - кристаллическая масса с чесночным запахом ядовит легко растворим в сероуглероде неустойчив, на свету или при нагревании превращается в серую модификацию. [c.158]

    При повышении давления равновесия смещаются в сторону образования веществ, обладающих меньшим объемом, т. е. в состояние с большей плотностью, что большей частью сопровождается увеличением их твердости. Повышение давления вызывает эффекты, в некоторых отношениях обратные тем, которые наблюдаются при повышении температуры. Так, при повышении температуры увеличивается объем, а при повышении давления он уменьшается при повышении температуры возрастает энтропия, а при повышении давления обычно она уменьшается. Часто наблюдается, что переход в форму устойчивую при более высоком давлении повышает металличность и степень симметрии кристалла. В области высоких давлений часто наблюдается переход веществ в такие кристаллические формы, которые не устойчивы или даже не существуют при обычных давлениях. Так, лед при высоком давлении, начиная примерно с 2000 атм, может существовать (в зависимости от сочетания температуры и давления) в нескольких различных кристаллических формах, не существующих при обычных давлениях. Все эти формы обладают большей плотностью, чем обычный лед. Например, плотность льда VI почти в полтора раза больше плотности обычного льда. Подобно этому желтый фосфор, обладающий в обычных условиях плотностью 1,82 г/сл1 , переходит- при высоких давлениях в черный фосфор с плотностью 2,70 г/сж серое олово (а = 8п, структура алмаза, плотность 5,75 з/с ), являющееся неметаллическим веществом, переходит в белое металлическое олово (Р=8п, тетрагональная структура, плотность 7,28 г/слг ) желтый мышьяк (плотность 2,0 г/см ) переходит в металлическую модификацию с плотностью 5,73 г/б .и . При высоких давлениях алмаз ( = 3,51 г/см ) становится более устойчивой формой, чем графит ( = 2,25 г/см ), хотя при обычных давлениях эти соотношения обратны. [c.241]


    Опишите строение неметаллических и металлических модификаций азота, фосфора, мышьяка, сурьмы и висмута. [c.73]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический вид, электропроводны, [c.424]

    В обычных условиях металлические модификации устойчивы по отношению к воздуху и воде. В ряду напряжений они располагаются после водорода. При взаимодействии с концентрированной ННОз мышьяк переходит в мышьяковую кислоту  [c.424]

    Азот образует двухатомные молекулы с кратной и очень прочной связью и с очень коротким расстоянием между атомами (0,109 нм). Белый фосфор построен из тетраэдрических молекул (Р4), в которых отсутствуют связи повышенной кратности за счет рп—рл-связывания. Фосфор имеет три основные полиморфные модификации. Сведения о структурах и свойствах этих модификаций фосфора приведены в табл. В.ЗО. Белый фосфор переходит в красный при 400 °С. У мышьяка и сурьмы известны также металлоподобные модификации. [c.530]

    Способность к образованию тройных комплексов встречается у ограниченного числа элементов, что способствует улучшению избирательности данной реакции. Наиболее часто фосфору в природных объектах сопутствуют кремний и мышьяк, также образующие гетерополикислоты. Однако гетерополикислоты этих элементов образуются при различной кислотности среды и в разных модификациях. Например, мышьяковая гетерополикислота образуется в 0,6—0,9 М растворе минеральной кислоты, кремневая гетерополикислота — в слабокислом растворе (pH =1,5—2,0 и pH = 3,0—4,0). Молибденовая гетерополикислота всегда образуется в а-форме, которая при рН=1,0 переходит в более устойчивую р-форму. В случае кремния реакционноспособной является только его мономерная форма силикат-ионы. Различную устойчивость гетерополикислот широко используют при определении этих элементов в смеси. Для разделения и концентрирования гетерополикислот применяют экстракцию их органическими растворителями, молекулы которых имеют электронодонорные атомы азота или кислорода (кетоны, спирты, амины), что позволяет определять меньшие, чем в обычной фотометрии, количества фосфора. [c.67]

    Мышьяк и его соединения ядовиты. Подобно фосфору, мышьяк встречается в нескольких модификациях. Обычная форма —металлический, или серый, мышьяк. Он проводит электрический ток. Мышьяк возгоняется, не плавясь, при 633 °С. Плотность пара до 800 °С соответствует формуле AS4, выше 1700° — формуле Asj. Пары мышьяка бесцветны. При резком охлаждении паров получается желтый мышьяк. По химическим свойствам он подобен белому фос( юру, но менее устойчив. При слабом нагревании, а также под влиянием света желтый мышьяк переходит в серый (металлический) мышьяк. [c.306]

    Обычная устойчивая металлическая модификация сурьмы имеет серебристый блеск, проводит электрический ток, хрупка, ее можно растирать в ступке. Желтая аллотропическая юрма сурьмы аналогична мышьяку, но менее устойчива и легко превращается в металлическую сурьму. [c.306]

    Основные характеристики некоторых, наиболее широко употребляемых полупроводниковых материалов приведены в табл. 34. Общим свойством всех указанных материалов является ковалентный или близкий к ковалентному характер связей, реализуемых в их кристаллах. Ширина запрещенной зоны зависит от энергии этих связей и структурных особенностей кристаллической решетки полупроводника. У полупроводников с узкой запрещенной зоной, таких, например, как серое олово, черный фосфор, теллур, заметный перенос электронов в зону проводимости возникает уже за счет лучистой энергии, в то время как для полупроводниковых модификаций бора и кремния требуется довольно мощный тепловой или электрический импульс, а для алмаза II — даже облучение потоками микрочастиц большой энергии или у-облучение. Лишь некоторые из полиморфных форм кристаллов обладают полупроводниковыми свойствами. Так, полупроводниковый эффект наблюдается лишь у одной из трех возможных полиморфных форм кристаллических фосфора и мышьяка и лишь у двух из четырех кристаллических модификаций углерода. [c.311]

    Мышьяк Аз, сурьма ЗЬи висмут В1 как простые вещества имеют несколько модификаций. В ряду Аз—5Ь—В1 уменьшается устойчивость неметаллических модификаций и возрастает устойчивость металлических. [c.279]

    Как и фосфор, мышьяк образует в парах молекулы Аз4. При охлаждении паров мышьяка образуется полуметаллическая модификация — желтый мышьяк, растворимый, как и белый фосфор, в сероуглероде. На свету желтый мышьяк переходит в серый. Серый мышьяк — металлическая модификация Аз. Желтая сурьма еще менее устойчива, чем желтый мышьяк. Висмут же полуметаллической модификации вообще не имеет. [c.279]

    Устойчивые в обычных условиях модификации — серый мышьяк, серая сурьма и висмут — имеют металлический блеск и характеризуются электронной проводимостью, но их хрупкость напоминает хрупкость неметаллов. [c.279]


    Металлические модификации мышьяка, сурьмы и висмута не окисляются кислородом воздуха и устойчивы по отношению к воде. [c.280]

    Структура элементных полупроводников подчиняется так называемому правилу октета , согласно которому каждый атом имеет (8 — №) ближайших соседей, где № — номер группы периодической системы, в которой находится данный химический элемент. Например, координационные числа в полупроводниковых модификациях углерода, кремния, германия, олова равны четырем (8—IV), в кристаллах фосфора, мышьяка, сурьмы — трем (8—V), а в полупроводниковых сере, селене, теллуре — двум (8—VI). [c.341]

    УА-группу составляют пять элементов азот Ы, фосфор Р, мышьяк Аз, с у р ь м а 8Ь и в и С М у т В1. Наличие пяти электронов на внещнем энергетическом уровне их атомов (rts np ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную —3. Однако по мере увел чения числа энергетических уровней в атоме и особенно при проявлении экранирующего ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200°С и 1,2 ГПа (12 000 атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства и, наконец, висмут — металл, проявляющий хрупкость, что характерно для неметаллических кристаллов. Усиление металлических черт в характере элементов явно проявляется в значениях ширины запрещенной зоны (см. рис-. 28) для кристаллов простых веществ, образованных ими. Так, (Для черного фосфора А =1,5 эВ, для серого мышьяка 1,2 эВ, для серой сурьмы 0,12 эВ, а висмут является проводником электричества. [c.251]

    Физические свойства. При конденсации пара мышьяка, состоящего из молекул Аз4, образуется неметаллическая малоустойчивая модификация — желтый мышьяк, который легко переходит (особенно при действии света и при нагревании) в серый мышьяк — [c.267]

    В своей устойчивой модификации мышьяк — серебристо-серое вещество, свежий излом которого блестит, но быстро тускнеет сурьма выглядит как металл серо-белого цвета со слабым синеватым оттенком, обусловленным примесями а висмут — блестящий белый металл, имеющий розоватый оттенок. Серый мышьяк — полупроводник серая сурьма и висмут обладают небольшой электрической проводимостью. Все они обладают хрупкостью, что объясняется слоистой структурой их кристаллов, образуемой атомами этих элементов, объединенных в плоскостные разветвленные макромолекулы (см. рис. 32,6). [c.268]

    Физические свойства. При конденсации пара мышьяка, состоящего из молекул Аз , образуется неметаллическая малоустойчивая модификация — желтый мышьяк, который легко переходит (особенно при действии света и при нагревании) в серый мышьяк — металлическую модификацию. Неметаллическая модификация сурьмы (желтая сурьма) еще менее устойчива, чем желтый мышьяк, а для висмута неметаллическая модификация неизвестна. [c.357]

    Простые вещества. Физические и химические свойства. В свободном состоянии мышьяк, сурьма и висмут представляют собой твердые кристаллические вещества с металлическим блеском серебристобелого цвета (Аз), с голубоватым отливом (5Ь) или красноватым оттенком на изломе (В1). При обычных условиях они образуют слоистые кристаллические решетки ромбоэдрического типа (а-модифи-кации). Каждый атом имеет трех ближайших соседей в пределах одного гофрированного слоя (к. ч. 3) и трех более удаленных соседей из следующего слоя. При переходе от мышьяка к висмуту различие в длинах связей внутри слоев и между слоями уменьшается и слоистый характер структуры нивелируется. Однако координационные числа всех трех элементов в а-ромбоэдрических модификациях подчиняются правилу Юм-Розери 8—IV. [c.285]

    Таким образом, в отличие от висмута, который обладает преимущественно металлическими свойствами, мышьяк и сурьма в некоторых модификациях являются полупроводниками и даже диэлектриками. [c.285]

    Некоторые полиморфные модификации мышьяка и сурьмы являются ковалентными полупроводниками. [c.365]

    В целом полученные результаты свидетельствуют о том, что вследствие ориентированной адсорбции молекул неионогенных поверхностно-активных веществ происходит модификация поверхности частиц сульфида мышьяка. Типично гидрофобный коллоидный раствор AS2S3 превращается в золь с лиофильными свойствами, агрегативная устойчивость которого обусловлена адсорбциои-ными гидратированными слоями неионогенного стабилизатора, образующимися вокруг частиц дисперсной фазы. Ориентированная адсорбция молекул неионогенных поверхностно-активных веществ на поверхности частиц была установлена экспериментально.  [c.298]

    В качестве промежуточного вещества при переходе желтой модификации мышьяка в металлическую образуется черный ме гшьяк — стекловидное аморфное вещество. При температуре выше 270°С он превращается в металлическую модификацию. В обычных условиях металлическая модификация мышьяка устойчива по отношению к воздуху и воде. Мышьяк растворяется в расплавленных металлах, придавая высокую хрупкость сплаву (1/1000 доля мышьяка делает золото хрупким). [c.306]

    Свойства. Мышьяк и сурьма имеют ряд аллотропных модификаций. Наиболее устойчипы металлические формы серого (М) и серебристо-белога (ЗЬ) цвета. Это хрупкие веицества, легко измельчаемые в ступке в порошок. Висмут - металл серебристо-белого цвета с едва заметным розовым оттенком. Он менее хрупок, чем сурьма, но и он легко разбивается при ударе молотка. Висмут - одно из немногих веществ, плотность которых в жидком состоянии больше, чем в твердом. Некоторые свойства элементных А , ЗЬ и В1 указаны в табл. 3.5. [c.422]

    По химическому составу полупроводники весьма разнообразны. К ним относятся элементарные вещества, как, например, бор, графит, кремний, германий, мышьяк, сурьма, селен, а также многие оксиды ( uaO, ZnO), сульфиды (PbS), соединения с индием (InSb) и т. д. и многие соединения, состоящие более чем из двух элементов. Известны и некоторые органические соединения обладающие полупроводниковыми свойствами. Таким образом, к полупроводникам относится очень большое число веществ. Обусловлены полупроводниковые свойства характером химической связи (ковалентным, или ковалентным с некоторой долей ионности), типом кристаллической решетки, размерами атомов, расстоянием между ними, их взаиморасположением. Если химические связи вещества носят преимущественно металлический характер, то его полупроводниковые свойства исключаются. Зависимость полупроводниковых свойств от типа решетки и от характера связи ясно видна на примере аллотропных модификаций углерода. Так, алмаз — типичный диэлектрик, а графит — полупроводник с положительным температурным коэффициентом электропроводности. То же у олова белое олово — металл, а его аллотропное видоизменение серое олово — полупроводник. Известны примеры с модификациями фосфора и серы. [c.298]

    УА-группу составляют пять элементов азот N. фосфор Р, мышьяк Аз, сурьма 8Ь и висмут В1. Наличие пяти электронов на внешнем энергетическом уровне их атомов (пз пр ) придает им окислительные свойства, т. е. способность проявлять в соединениях степень окисления, равную -3. Однако по мере увеличения числа энергетических уровней в атоме и особенно при проявлении экранируюш его ядро предвнешнего -подуровня, начиная с мышьяка, неметаллический характер элементов заметно ослабевает. Азот — типичный неметалл фосфор — неметалл, но в одной из своих модификаций — черной, получаемой при 200 °С и 1,2 ГПа (12 ООО атм), — проявляет полупроводниковые свойства мышьяк и сурьма в своих более устойчивых модификациях проявляют полупроводниковые свойства [c.335]

    Молибденофосфорная ГПК получается в 0,85 н. растворе минеральной кислоты, молибденомышьяковая в 0,6—0,9н. растворе, молибденокремниевая кислота в слабокислом растворе (рН1,5—2,0 и pH 3—4). Различная устойчивость указанных комплексных соединений широко используется при определении кремния, фосфора и мышьяка в их смеси. При фотометрическом определении этих элементов по желтым формам следует учитывать различные модификации а- и р- форм, природа которых не совсем ясна. По-видимому, решающим в образовании этих форм является степень полимеризации молибдата возможно различия заложены в структуре ГА. [c.139]

    Для мышьяка и сурьмы кроме а-формы известны и другие полиморфные модификации. Так, при конденсации пара мышьяка на охлаждаемой жидким азотом поверхности образуются желтые, мягкие, как воск, кристаллы кубической сингонии, подобные белому фосфору. Превращение желтого мышьяка в стабильную -ромбоэдрическую форму обычно протекает через стадию образования так называемого черного мышьяка, также похожего на аналогичную модификацию фосфора. Если желтый мышьяк — диэлектрик, то черный обладает полупроводниковыми свойствами (АЕ = = 1,2 эВ). При 290 °С черный мышьяк превращается в обычный серый металлический мышьяк. Аналогичные превращения наблюдаются и у сурьмы. Желтая сурьма получается при пропускании воздуха через сжиженный ЗЬНз. Эта модификация чрезвычайно нестабильна и уже при 50 °С превращается в обычную серую металлическую сурьму. Черную сурьму получают конденсацией пара сурьмы на охлаждаемых подложках. Как и черный мышьяк, она обладает полупроводниковыми свойствами (АЛ =0,12 эВ), но сохраняет пх лишь до О С. Для висмута полиморфные модификации неизвестны. [c.285]


Смотреть страницы где упоминается термин Мышьяк модификации: [c.380]    [c.336]    [c.424]    [c.368]    [c.336]    [c.313]    [c.344]    [c.509]    [c.471]   
Курс неорганической химии (1963) -- [ c.701 ]

Неорганическая химия (1974) -- [ c.265 ]

Неорганическая химия Издание 2 (1976) -- [ c.313 ]

Курс неорганической химии (1972) -- [ c.628 ]




ПОИСК







© 2025 chem21.info Реклама на сайте