Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Связей ковалентных частично ионный характер

    В гетероядерной двухатомной молекуле АВ, где В-более электроотрицательный атом, чем А, связывающая молекулярная орбиталь содержит больший вклад атомной орбитали атома В, а разрыхляющая молекулярная орбиталь больше напоминает атомную орбиталь атома А. Если разность электроотрицательностей атомов А и В очень велика, как, например, в КР, валентные электроны локализуются на более электроотрицательном атоме (в данном случае Р) и представление о ковалентной связывающей орбитали теряет свой смысл. В такой ситуации правильнее говорить об ионной структуре К Р . Большинство гетероядерных двухатомных молекул имеют промежуточный характер связи между ионными парами и ковалентно связанными атомами другими словами, они имеют частично ионный характер связи и могут описываться структурами А В .  [c.544]


    При разности электроотрицательностей больше 2,0 связь может считаться ионной при разности 0,4-2,0 возникает ковалентная связь с частично ионным характером, и при разности меньше 0,4 связь считается чисто ковалентной. [c.406]

    Галогениды водорода представляют собой интересный ряд соединений с ковалентной связью, имеющей частично ионный характер или полярность, что можно проследить по величине их электрического дипольного момента. Электрическим дипольным моментом молекулы называется произведение rq, где г —расстояние между центрами отрицательного и положительного зарядов в молекуле, а (/ — величина этих зарядов. Если центры отрицательного и положительного заря- [c.125]

    Ионную связь можно рассматривать как предельную полярную химическую связь, для которой эффективный заряд атома близок к единице. В то же время для неполярной ковалентной связи эффективный заряд атомов равен нулю. Химическая связь большинства соединений является полярной, т. е. имеет промежуточный характер между неполярной ковалентной и ионной связями. Можно сказать, что такая ковалентная связь имеет частично ионный характер. Долю ионного характера связи называют степенью ионности, которая количественно характеризуется эффективными зарядами атомов в молекуле. Например, степень ионности молекул H I и LiF равна 0,17 и 0,9 соответственно. Поэтому указанным соединениям присущи и ковалентная и ионная связи. Степень ионности связи возрастает с увеличением разности электроотрицательности образующих ее атомов (рис. II.2). [c.35]

    Говорят, что полярные связи имеют частично ионный характер, так как смещение электронной плотности эквивалентно частичному переносу заряда. Разумеется, ионную связь можно рассматривать как предельно поляризованную ковалентную связь, однако в соответствии с таким подходом, для того чтобы ионный характер связи достиг 100%, потребовалась бы бесконечно большая разность электроотрицательностей. [c.125]

    Выше указывалось (стр. 327), что в кристалле 2п8, сходном по структуре с алмазом, действуют как ковалентные, так и ионные силы. Нитрид бора ВЫ аналогично графиту имеет слоистую решётку (I), причем а-связям свойствен частично ковалентный, частично ионный характер, как и в кристалле 2п8. Отличие от последнего заключается в том, что в ВЫ гибридизация скорее тригональная чем тетраэдрическая зр . Так же как и в графите, п-электроны кристалла ВЫ занимают МО типа двойных баллонов , простирающихся на всю плоскость слоя. Здесь мы опять имеем твердое тело, промежуточное между типами 2, 3 и 4 (раздел 11.1). [c.330]


    Часто показывают лишь ковалентную структуру, помня при этом, что эти ковалентные связи имеют в известной мере ионный характер они называются ковалентными связями с частичным ионным характером. [c.192]

    Успехи теории резонанса связаны также и с те.м, что на ее языке часто излагались или впервые формулировались идеи, которые затем нашли плодотворное при.менение в теоретической химии. Полинг, например, ставит в генетическое отношение к теории резонанса понятия об одноэлектронной связи, о трехэлектронной связи, о частичном ионном характере ковалентной связи между неодинаковыми атомами, о гибридизации, о сверхсопряжении н о частичной связанности в металлах [6, стр. 2] . Безусловно, не только такого рода идеи, но и результаты работ в области теоретической химии Полинга, Уэланда и их последователей, не имевшие прямого отношения к теории резонанса, ставились в заслугу этой теории только потому, что они были получены ее видными адептами. [c.407]

    Молекула водорода является примером ковалентно-ионного резонанса. Поскольку структуры 3.IV6 и S.IVb важны при точном описании связей с точки зрения метода ВС, связь имеет частично ионный характер. Однако полярность, которую вводит структура 3.IV6, строго сбалансирована с полярностью, вводимой структурой 3.IVb, так что связь не обладает никакой чистой полярностью. Поэтому ее называют неполярной ковалентной связью. Важно не путать полярность и ионный характер, хотя, к сожалению, в литературе имеется большое число примеров такой путаницы. Если обратиться к гетероядерным двухатомным молекулам, то неизменно будем наблюдать связи, которые имеют как ионный, так и полярный характер. Даже у чистой ковалентной канонической структуры НС1 (3.1а) есть полярность связи, так как два разных атома неизбежно имеют различное сродство к электронной паре, следовательно, эта пара находится в совместном владении обоими атомами, но не в равной мере. Можно также ожидать, что некоторый вклад будут давать ионные структуры 3.16 и 3.1в. Вследствие того что [c.84]

    Mo( N8] и их вольфрамовых аналогов нельзя объяснить образованием двойных связей вследствие малого числа Зс -электронов. Эти комплексы содержат, вероятно, восемь ординарных ковалентных связей с частично-ионным характером, который обусловливает перенос части отрицательного заряда от центрального атома к присоединенным группам. Тот факт, что высокое координационное число восемь обнаруживается только в цианидах, а не в хлоридах, объясняется, по всей вероятности, стерическими причинами. В цианидных группах, со структурой М С Ы все электроны углерода сконцентрированы в основном около оси, на которой расположены ядра, и только неподеленная пара направлена наружу. Поэтому стерическое отталкивание между восемью цианидными группами, присоединенными к одному атому, невелико, тогда как восемь больших групп не могут разместиться вокруг центрального атома. [c.254]

    Обобщим еще раз возможность охарактеризовать атомную связь и атомную связь с частично ионным характером (не, ,чистую ковалентную атомную связь) иа языке обоих методов — метода молекулярных орбит и метода валентных связей. [c.32]

    Кристаллы комплексных соединений занимают промежуточное положение между ионными и молекулярными, поскольку здесь связи имеют частично ковалентный, частично ионный характер, а иногда наряду с этими двумя типами связи встречаются и связи ван-дер-ваальсовского типа. Поэтому ни принцип плотнейшей упаковки шаровых ионов, ни концепция плотнейшей упаковки жестких группировок атомов не осуществляется в комплексных кристаллах в полной мере. Пользоваться этими представлениями приходится с большой осторожностью. [c.213]

    Так как углерод занимает промежуточное положение по шкале электроотрицательности, то естественно, что он обычно не образует ионных связей его связи с другими элементами ковалентные. Для большинства химических связей пара электронов не распределяется симметрично между двумя атомами, в этом случае связь носит частично ионный характер. [c.524]

    Такие связи называют ковалентными связями с частично ионным характером. [c.41]

    Электроотрицательность является мерой способности атома притягивать к себе электроны, обобществляемые при образовании связи с другим атомом. Пользуясь данными, приведенными в табл. 9-1, можно предсказать, что связь в молекуле СзР будет ионной, а в молекуле СН -ковалентной. Характер связи в молекуле НР должен быть промежуточным между предельными случаями СзР и СН . Связывающие электроны в молекуле НР оттягиваются по направлению к атому Р, вследствие того что его электроотрицательность больше. Связь в НР имеет частично ионный характер, что схематически отображается структурой Н Р° (где 5 и 5 — соответствуют дробным зарядам, меньшим 1). Вообще говоря, связи между атомами имеют различную степень ионного характера, или различную степень ионности, зависящую от разности их электроотрицательностей.  [c.406]

    Пользуясь значениями электроотрицательности, предскажите, имеет ли связь в а) СаО, б) HI. в1 SiH, г) Вг и д) I I чисто ковалентный, чисто ионный или частично ионный характер. В случае чисто ионной и частично ионной связей укажите ожидаемое распределение зарядов. [c.407]


    Для одинарной ковалентной связи между двумя атомами А и В дополнительная обусловленная ее частично ионным характером, по Полингу приблизительно оценивается формулой 100[ЭО(А)—ЭО(В)] кДж, т. е. она пропорциональна квадрату разности электроотрицательностей двух данных атомов. Вычислите дополнительную энергию связей И—I и НС1 за счет частично ионного характера связей, если Э0(Н)=2,1, ЭО(С1)=3,0 и Э0(1) = = 2,6. Какое из этих двух соединений прочнее и реакция его образования более экзотермична  [c.132]

    Частично ионный характер ковалентных связей [c.154]

    На практике -принято показывать связи между -сильно электроположительными металлами и неметаллами как ионные -связи, а связи между неметаллами и неметаллами или металлоидами как ковалентные связи, которые, разумеется, имеют в какой-то мере частично ионный характер. [c.156]

    Пример. В молекуле НС1 распределение электронной плотности вдоль связи И—С1 таково, что электрический центр тяжести отрицательного заряда смещен к атому С1, а центр тяжести положительного заряда — к атому Н. В результате на атомах хлора и водорода возникают эффективные заряды Н —С1 . а связь водород—хлор приобретает частично ионный характер. В ковалентной молекуле НС1 ионный характер связи составляет 17 %, или полярность связи равна 17 %, [c.132]

    С тех пор как химик освоил основы квантовой механики, он пытается определить ковалентный и ионный характер связи в терминах волновых функций. Новая точка зрения представляется, в частности, Коулсоном, который утверждает, что имеется два различных определения ковалентной связи ([447], стр. 145). Он описывает волновую функцию связи сначала в приближении молекулярных орбит , а затем в приближении теории валентных связей. В том и другом случае приближенные волновые функции составляются из линейной, комбинации атомных функций. Частичная ионность связи определяется величиной коэффициентов, характеризующих асимметрию распределения электронов. [c.196]

    ЧАСТИЧНО ИОННЫЙ ХАРАКТЕР КОВАЛЕНТНЫХ СВЯЗЕЙ [c.136]

    В каждом периоде периодической таблицы наблюдается общая тенденция к возрастанию энергии ионизации с увеличением порядкового номера элемента. Сродство к электрону оказывается наибольшим у кислорода и галогенов. Атомы с устойчивыми орбитальными конфигурациями.(s , s p , s p ) имеют очень небольшое (часто отрицательное) сродство к электрону. Расстояние между ядрами двух связанных атомов называется длиной связи. Атомный радиус водорода Н равен половине длины связи в молекуле Hj- В каждом периоде периодической таблицы наблюдается в общем закономерное уменьшение атомного радиуса с ростом порядкового номера элемента. Электроотрицательность представляет собой меру притяжения атомом электронов, участвующих в образовании связи с другим атомом. При соединении атомов с си.пьно отличающейся электроотрицательностью происходит перенос электронов и возникает ионная связь атомы с приблизительно одинаковой электроотрицательностью обобществляют электроны, участвующие s сбразовашг. ковалентной связи. Между атомами типа Н и F с умеренной разностью электроотрицательностей образуется связь с частично ионным характером. [c.408]

    Если молекула симметрична и в ней ковалентно связаны два одинаковых атома, как в молекулах На, I2 или СН3—СНз, то электронное облако симметрично центру связи, дипольный момент молекулы равен нулю. Оба электрона, участвующие в образовании связи, с одинаковой вероятностью находятся около каждого из соединенных атомов. Но если связанные атомы неодинаковы или молекула не симметрична, то электронная плотность сдвинется к одному из атомов и вероятность пребывания связывающих электронов в поле этого атома возрастет. Таким образом, один атом обычно бывает более электроотрицательный (электроотрицательность — это способность атома в молекуле притягивать к себе электроны). Мерой способности к такому присоединению служит так называемое сродство к электрону, характеризующее энергию, выделяющуюся при присоединении электрона к нейтральному атому. Следствием вышеуказанного сдвига будет появление частичных, очень маленьких зарядов (доля заряда электрона) на связанных ковалентной связью атомах, в результате чего связь приобретает частично ионный характер. Примером может служить молекула НС1, где электронная плотность сдвинута (за счет гибpидизaции ) к атому хлора. Такую ковалентную связь называют полярной. Молекула, содержащая полярную ковалентную связь, обладает дипольным моментом, равным произведению [c.46]

    Приведенные значения энергии относятся не к предельн> ковалентным связям, а к реальным связям с частично-ионным характером. Как было отмечено в разделе 12а, наблюдаемое значение электрического дипольного момента ацетона [c.134]

    Еще одно важное свойство характеризует ковалентную связь. Мы говорим, что ее возникновение связано с увеличением электронной плотности между атомами, но симметрия электронного облака, конечно, зависит от того, какие атомы и в какой молекуле оно соединяет. Если молекула симметрична и в ней ковалентно связаны два одинаковых атома, как, например, в молекулах Нг или СНз—СНз, то электронное облако симметрично центру связи. Оба электрона, участвующие в образовании связи, с одинаковой вероятностью находятся около каждого из соединенных атомов. Но если связанные атомы неодинаковы или молекула не симметрична, то электронная плотность сдвинется к одному из атомов и вероятность пребывания связывающих электронов в поле этого атома возрастет. Таким атомом обычно бывает более электроотрицательный, так как электроотрицательность — это способность атома в молекуле притягивать к себе электроны. - Следствием такого сдвига будет появление частичных, очень маленьких зарядов (доля заряда электрона) на связанных ковалентной связью атомах, в результате чего связь приобретет частично ионный характер. Примером может служить молекула НС1, где электронная плотность сдвинута к атому хлора. Такую ковалентную связь называют полярной. Молекула, содержащая полярную ковалентную связь, обладает дипольным моментом, равным произведению зарядов атомов на расстояние между ними. Ионный характер ковалентной связи зависит от разницы в величинах электроотрицательности соединенных атомов, В ряду HJ-vHBr- H I-vHF ионная составляющая связи соответствует 5, 11, 17 и 45%, т. е. молекула фтористого водорода почти наполовину носит ионный характер. Предельным случаем полярной ковалентной связи будет полностью ионная связь. В основе такой связи лежит электростатическое взаимодействие между разноименно заряженными ионами — катионом и анионом. Примером веществ с преимущественно ионной связью могут служить соли Na l, NaF, sF и др. [c.30]

    Если провести математические операции, выражаемые словами скомбинируем две атомные орбитали так, чтобы получить разрыхляющую и связывающие молекулярные орбитали , то обнаружится, что две такие атомные орбитали должны обладать достаточно близкими энергиями. В молекуле каждая из двух молекулярных орбиталей содержит 50%-ный вклад от Ь-орбитали каждого атома водорода. В противоположность этому если в молекуле АВ скомбинировать орбиталь атома А, обладающую очень высокой энергией, и орбиталь атома В с довольно низкой энергией, то математические выкладки покажут, что разрыхляющая молекулярная орбиталь представляет собой почти чистую исходную орбиталь атома А, а связывающая орбиталь - почти чистую исходную орбиталь атома В. Следовательно, пара электронов на такой связывающей орбитали в сущности находится вовсе не на настоящей ковалентной связывающей орбитали. На самом деле речь идет о неподеленной паре электронов на атомной орбитали атома В. Взаимодействие атомных орбиталей двух атомов с больщим различием в энергиях пренебрежимо мало. На примере молекулы НР мы увидим, что это означает, если принять во внимание частично ионный характер связи. [c.532]

    Как и следует ожидать, бериллий, ядро которого слабо экранировано, заметно отличается от остальных элементов этой подгруппы. Его атом имеет малый радиус, наименьшее число электронов и отсюда большой потенциал ионизации, что обусловливает преимущественно ковалентный характер соединений этого элемента. Частично ионный характер имеют связи в оксиде бериллия ВеО — высокоплавящемся и нелетучем соединении. [c.154]

    В данной главе мы сосредоточим внимание главным образом на рассмотрении физических свойств отдельных ионов и молекул, а также их агрегатов и покажем, как эти свойства предопределяются характером химической связи. Хотя мы будем все время противопоставлять друг другу ионный (электровалентный) и ковалентный типы связей, не следует забывать, что между чисто ионной и чисто ковалентной связью существует множество промежуточных грададий Многие ковалентные связи поляризованы и имеют частично ионный характер, и в то же время даже ионные связи между элементами с большой разностью электроотрицательностей обладают (хотя и в небольшой степени) ковалентным характером. Полностью ионных связей не существует, и вместе с тем неполярные ковалентные связи обнаруживаются только между идентичными атомами, как, например, в молекулах Н2 или С12- [c.128]

    Наиболее удивительной структурной особенностью является а-связь-Со—С длиной 2,05 А. Таким образом, кофермент представляет собой алкилкобальт — первое соединение этого типа, обнаруженное в природе. До 1961 г. полагали, что все алкилкобальты неустойчивы. Хотя связь 5 -дезоксикобаламина является ковалентной, угол Со—С—С составляет 130°, что указывает на частично ионный характер связи Со—С [160]. Уровень окисления кобальта равен 3+, и можно представить себе, что-цианкобаламин образуется при замещении одного из водородов внутри корринового цикла на Со + плюс N . Однако следует помнить, что три других цикла азота корринового цикла и азот диметилбензимидазола также образуют связи с кобальтом. Каждый атом азота отдает электронную пару на формирование ковалентных связей хелатного комплекса. В формуле, приведенной в дополнении 8-Л, это показано стрелками, с тем чтобы подчеркнуть формальное различие между этими связями и иной связью Со—N. Однако вследствие резонанса в системе сопряженных двойных связей коррина все четыре связи Со—N цикла примерно равноценны, и положительный заряд делокализован по всем атомам азота, окружающим кобальт. [c.284]

    В водородной связи атом водорода соединен с двумя другими атомами. Правила возникновения межатомной связи предполагают, что у атома водорода, использующего только 15-орбиту для межатомного взаимодействия, не могут возникнуть две ковалентные связи. Объяснение образования водородной связи базируется на полярной природе связей Р-Н, 0-Н, М-Н. Например, в молекуле НзО электронная пара, образулощая связь в группе 0-Н, смещена к ядру кислорода и удалена от ядра водорода. Такой частично ионный характер связи 0-Н ведет к тому, что атом водорода приобретает некоторый положительный заряд, а это позволяет электронам другого атома О приблизиться к протону, если даже протон уже связан. Образуется вторая, более слабая водородная связь (на рис, 2.4 для молекулы воды ковалентная связь обозначена сплошными линиями пересекающихся орбит атомов кислорода (большие кружки) и водорода (маленькие кружки), а водородная - пулпсгирной линией). [c.29]

    Водородная связь (водородный мостик). Атом водорода имеет один электрон и потому может участвовать только в одной ковалентной связи. Однако в некоторых груннах, например в О—Н или С—О, связи имеют характер частично ковалентных, частично ионных связей. Атом водорода, отдав свой электрон, остается в виде ядра очень малого размера, почти лишенного электронной оболочки. Он не испытывает отталкивания от электронной оболочки другого атома и, притягиваясь ею, может вступать с ней во взаимодействие. Новая связь, образующаяся между атомом водорода одной молекулы и атомами кислорода, азота, фтора, хлора или серы другой (или той же) молекулы, является одной из причин ассоциации или сольватации молекул. Энергия водородных связей составляет 3,5—10 ккал1моль. [c.19]


Смотреть страницы где упоминается термин Связей ковалентных частично ионный характер: [c.41]    [c.156]    [c.85]    [c.45]    [c.229]    [c.535]    [c.145]    [c.170]    [c.50]    [c.326]    [c.205]    [c.327]    [c.23]   
Общая химия (1974) -- [ c.165 , c.167 ]




ПОИСК





Смотрите так же термины и статьи:

Ион ионы связи

Ионная связь

Ионные радиусы . 6.11. Частично ионный характер ковалентных связей

Ковалентность

Ковалентные радиусы частично-ионный характер связе

Связи ковалентные Связи

Связь ковалентная

Связь характер

Частично-ионный характер ковалентных связей и относительная электроотрицательность атомов Переход от одного предельного типа связи к другому

частично-ионный характер связей



© 2024 chem21.info Реклама на сайте