Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Работа в. Кислород

    Определение молекулярного веса кислорода. Работа проводится так же, как в опыте 1. Необходимый для работы кислород, получаемый в аппарате Киппа, осушить, пропуская через склянку с концентрированной серной кислотой. [c.33]

    Количество перерабатываемого воздуха, Давление, МПа Режимы работы Кислород технологический количество, м /ч концентрация, % давление, кПа Кислород технический [c.205]


    РАБОТА КИСЛОРОДО-АРГОННЫХ АППАРАТОВ [c.633]

    Кислород в систему поступает из баллона при помощи специального редуктора, показывающего давление кислорода в системе. Избыток кислорода поступает в газометр. Во время работы кислород должен время от времени выходить через воронку газометра. Поэтому [c.58]

    Многие ХИТ не требуют для своей работы кислорода воздуха, это позволяет использовать их под водой и в космосе. Благодаря своим достоинствам ХИТ нашли применение практически во всех отраслях народного хозяйства. [c.154]

    Определение молекулярного веса кислорода. Работа проводится так же, как в опыте 1. Необходимый для работы кислород, [c.32]

Рис. 6. Принцип работы кислород проницаемой мембраны в реакции получения синтез-газа из метана Рис. 6. <a href="/info/17593">Принцип работы</a> <a href="/info/834749">кислород проницаемой</a> мембраны в <a href="/info/1470839">реакции получения синтез-газа</a> из метана
    Быков Б. Т., Опыт применения оксиликвитов на поверхностных )г подземных работах, Кислород , 1946, № 4. [c.377]

    Французский химик Жозеф Луи Пруст (1754—1826), который работал в Испании, придерживался противоположного мнения. С помощью тщательных анализов Пруст в 1799 г. показал, например, что карбонат меди характеризуется определенным весовым соотношением меди, углерода и кислорода вне зависимости от того, каким способом эта соль получена в лаборатории или каким способом выделена из природных источников. Соединение всегда содержит 5,3 части меди, 4 части кислорода и 1 часть углерода. [c.54]

    Если в результате химической реакции возникает электрический ток, то естественно предположить, что и электрический ток может изменять материю и вызывать химическую реакцию. И действительно, всего через шесть недель после первого описания Вольтой своей работы два английских химика — Уильям Николсон (1753—1815) и Энтони Карлайл (1768—1840) продемонстрировали наличие такой обратной зависимости. Пропустив электрический ток через воду, они обнаружили, что на электропроводящих полосках металла, опущенных в воду, появляются пузырьки газа. Как выяснилось, на одной из полосок выделяется водород, на другой — кислород. [c.58]

    Результаты исследований Николсона и Карлайла были подкреплены работой французского химика Жозефа Луи Гей-Люссака (1778—1850). Гей-Люссак установил, что два объема водорода, соединяясь с одним объемом кислорода, образуют воду. Далее, он нашел, что когда газы образуют соединение, соотношение их объемов всегда представляет собой соотношение кратных чисел. В 1808 г. Гей-Люссак опубликовал сообщение об открытом им законе объемных отношений. [c.59]


    Шотландский химик Уильям Рамзай (1852—1916) заинтересовался этой проблемой и вспомнил об эксперименте Кавендиша (см. гл 4), который еще в 1785 г. пытался связать азот воздуха с кислородом в свое время эта работа не привлекла внимания химиков. Кавендиш установил тогда, что последний пузырек газа нельзя было заставить соединиться с кислородом ни при каких условиях. Логично было предположить, что этот последний пузырек газа мог быть и не азотом. Возможно, получаемый из воздуха азот содержит в качестве примеси другой газ, плотность которого выше, и именно поэтому полученный из воздуха азот кажется немного тяжелее, чем есть на самом деле. [c.106]

    Но что если в окружающей среде не хватает кислорода Как раз это и происходит в наших мышцах при тяжелой работе. Представьте себе, что вы колете дрова [c.173]

    Когда же работа окончена и мышцы отдыхают, они должны набраться кислорода, чтобы с его помощью избавиться от молочной кислоты, превратив ее снова в пировиноградную. (Кислород соединяется с двумя лишними водородными атомами молочной кислоты с образованием воды.) Вот почему вы продолжаете задыхаться еще некоторое время после того, как кончили колоть дрова или бегать у вас образовалась кислородная недостаточность, которую организм должен восполнить. [c.174]

    Это соотношение не всегда отвечает потребности в тех или иных продуктах, что вынуждает при помощи специальных мер изменять его в требуемом, направлении. Работами Бахмана и его учеников показано, что добавкой кислорода, хлора или того и другого можно влиять па распределение различных нитропроизводных в продуктах реакции [30]. Определенное значение имеют также температура реакции, соотношение компонентов и время пребывания реакционной смеси в реакторе. [c.127]

    Реакционная смесь из первой колонны поступает затем во вторую, куда также подают сернистый ангидрид и кислород, но сюда дают уже не уксусный ангидрид, а разбавленный водный раствор уксусной кислоты, который при температуре 55—60° растворяет образовавшиеся сульфокислоты. Способ работы ясен из схемы рис. 79. [c.145]

    Как показали работы многочисленных исследователей [52, 54], реакция протекает по цепному механизму, так как она в сильной степени замедляется присутствием кислорода, азота и других веществ, вызывающих обрыв цепей. [c.155]

    Влияние кислорода на процессы трения металлов в углеводородных средах исследовано в капитальных работах проф. Г. В. Виноградова. Им впервые было показано, что углеводородная среда может транспортировать кислород к поверхности трения путем окисления углеводородов и последующего их разложения на поверхностях трения с выделением кислорода в активной форме. [c.66]

    Принципиальным отличием ракетного двигателя является то, что он работает независимо от окружающей среды. При сжигании горючего в ракетном двигателе используется не кислород воздуха, а специальный окислитель, запасы которого должны быть на борту летательного аппарата. В ракетных двигателях могут применяться в качестве топлива вещества, способные выделять тепловую энергию, и газообразные продукты в результате разложения, ассоциации, ядерных процессов или других реакций без участия окислителя. [c.116]

    С развитием авиационного двигателестроения повысились тепловые напряжения, скорости движения и нагрузки на трущиеся детали двигателей. Масло в двигателе подвергается воздействию высоких температур, каталитическому влиянию различных металлов, большим давлениям, окислительному действию кислорода воздуха. Условия работы масла значительно меняются в зависимости от типа двигателя, его конструктивных особенностей. В некоторых случаях для смазки одного и того же двигателя, работающего в различных условиях (арктических или экваториальных), требуются различные по качеству масла. Для различных типов авиационных двигателей, а также для агрегатов и приборов требуются прежде всего масла различной вязкости. Вязкость обычно является основным определяющим показателем при классификации масел. [c.134]

    Электроды для топливных элементов из графитированных тканей на основе ГЦ-волокна применяются для щелочных и кислотных электролитов [В-5]. Схема работы кислород-водородного топливного элемента со щелочным электролитом показана на рис. 9-68. Продуктом реакции прямого преобразования является вода, которая после заполнения пор электродов препятствует прохождению через них газов и образованию трехфазной поверхности между катализатором, электролитом и газом. Для предотвращения затопления пор их поверхность покрывается фторопластом или монофторидом углерода, что обеспечивает ее гидрофобность. [c.627]

    В широко используемых воздушно-цинковых элементах положительный электрод изготавливают из смеси мелкоразмолотых активированного угля и графита. Пластины готовят либо обжигом этой смеси со связующим (патокой, пеком), либо порошок угля и графита с пластмассовым связующим напрессовывают на сетку. Для предохранения от проникновения электролита в поры электроды обрабатывают разведенным раствором каучука или парафина в бензине. После испарения бензина вся поверхность электрода снаружи и в порах остается покрытой тончайшей пленкой гидрофобного материала, это делает электрод плохо смачивающимся, но не препятствует прохождению электрического тока. При достаточно малом диаметре пор и плохом смачивании электролит в поры проникнуть не может, они заполнены воздухом, кислород диффундирует к поверхности электрода, погруженного в электролит, и обеспечивает разряд с удовлетворительной плотностью тока. Постепенно все поры электрода заполняются электролитом и он перестает работать. Кислород на угольном электроде может восстанавливаться до перекиси водорода и до гидрооксила [23] [c.563]


    В лаборатории доктора Михаэлиса применяли зеркальный гальванометр ambridge Instrument o. с внутренним сопротивлением 2750 ом, внешний шунт для торможения составлял 20000 ом. Чувствительность была настолько велика (2,5-10" ° а), что для применявшихся стеклянных электродов 1 мв давал отклонение 1—2 мм на расстоянии I м. Следовательно, по шкале легко было отсчитать число милливольт и оценить 1/10 мв путем последовательных измерений до тех пор, пока слабое изменение при подборе потенциала на потенциометре не давало одинаковое отклонение в обе стороны. Гальванометр применяли с потенциометром Лидса и Норсрупа типа К, в котором был удален шунт, так как он слишком сильно тормозил чувствительный прибор. В качестве источника тока использовали вместо аккумулятора специальный щелочной цинк-угле-родный элемент на 2—1,5 в, использующий для работы кислород. Его особое преимущество состояло в том, что он давал ток в течение нескольких часов без заметного (т. е. менее чем на 1/100 мв) изменения напряжения. Стандартным элементом служил ненасыщенный элемент Вестона его напряжение несколько раз проверяли в процессе измерений. [c.119]

    Ни один из стабильных изотопов кислорода, азота, углерода или водорода не был открыт масс-спектроскопически, хотя первые точные определения распространенности были сделаны именно этим методом. В ранних работах кислород был признан элементом, состоящим из одного изотопа, и масса была выбрана в качестве эталона масс. Открытие в атмосферном кислороде и в результате изучения полос поглощения кислорода было осуществлено в 1929 г. [738, 739]. За этим быстро последовало открытие и С, проведенное также оптическими методами. Дейтерий не был идентифицирован до 1932 г. Первые определения относительной распространенности изотопов кислорода [81], азота [2076], углерода [82] и водорода [224] масс-спектрометрическим методом были осуществлены несколько лет спустя после открытия изотопов. В отличие от ранних работ, где ошибки возникали при обнаружении и интерпретации массовых линий, поздние измерения проводились с применением масс-спектрометра и ионного источника с электронной бомбардировкой. Возросшая точность идентификации ионов, относимых к каждому массовому пику, привела к открытию многих новых изотопов. Примером прогресса, вызванного более широкими возможностями используемых источников, может служить открытие Ниром [1492] изотопов кальция с массами 46 и 48. Более ранняя работа [83] свидетельствовала о наличии изотопов с массами 40, 42, 43 и 44. Для получения ионного пучка Нир испарял металлический кальций в пучок электронов и получил ионный ток больше 10 а для наименее распространенного изотопа кальция ( Са), присутствующего в количестве лишь 0,003% от изотопа <>Са. При изменении температуры печи в пределах, соответствующих 10-кратному изменению давления, пики с массами 46 и 48 оставались в постоянном соотношении к пикам с массой 40. Это доказывало, что указанные выше пики относятся к малораспространенным изотопам кальция, а не вызваны наличием примесей. Дальнейшее подтверждение существования малораспространенных изотопов было получено изменением энергии ионизирующих электронов и установлением зависимости между изменением интенсивности пучка ионов для каждой массы и изменением энергии электронов. В пределах ошибки эксперимента все ионы обладали одним и тем же потенциалом появления и одной и той же формой кривой эффективности ионизации. Сходные измерения были проведены с использованием двухзарядных атомных ионов. На пики с массами 24 и 23 налагались пики, обусловленные примесью магния и натрия. Эти ионы примесей могли быть обнаружены по их гораздо более низкому потенциалу появления по сравнению с потенциалами двухзарядных ионов кальция. Оказалось возможным провести измерение ионов ( Са) , вводя поправку на присутствующие ионы однако более значительные количества < Ыа) помешали определению ионов кальция при этом отношении массы к заряду. [c.71]

    В процессе работы кислород ой установки 1юнтролю со стороны обслуживающего персонала подлежат следующие основные показатели  [c.276]

    Последовательная сборка агрегата, обязательное обезжиривание всех деталей, соприкасающихся о чремя работы кислородом. [c.206]

    Расчеты строились по такому принципу. 31а основу сравнения были приняты условия работы кислородио-аргонного аппарата с отбором газообрааного азота из-под крышки конденсатора. Был произведен расчет процесса ректификации в -таком аппарате и определено число теоретических тарелок в верхней колонне. Количество азота, отбираемого из-под крышки конденсатора, принималось равным 15% общего объема перерабатываемого воздуха, что находится в соответствии с данными практики. [c.148]

    Интересно заметить, что, по данным цитируемой работы, кислород не оказывает влияния на активность других металлоорганических каталитических систем, используемых в полимеризации этилена, например А1(изо-64119)3 — Ti l4 или Л1(изо-С4Н9)з — V I4 при отношениях А1 Ме > 3. [c.88]

    С 1810 г. Гей-Люссак и Тенар работали над цианидом водорода H N, который, как они показали, представляет собой кислоту, хотя и не содержит кислорода. (Это открытие, как и открытие Дэви установившего примерно в то же время, что хлорид водорода — кислота, опровергали представление Лавуазье о том, что кислород является характерным элементом кислот.) Гей-Люссак и Тенар обнаружили, что группа N (цианидная группа) может переходить от соединения к соединению, не разлагаясь на отдельные атомы углерода и азота. Группа N ведет себя во многом как единичный атом хлора или брома, поэтому цианид натрия Na N имеет некоторые общие свойства с хлоридом натрия Na l и бромидом натрия NaBr .  [c.76]

    В 90-х годах прошлого века над этой проблемой начал работать шотландский химик Джеймс Дьюар (1842—1923). Он приготовил в большом количестве жидкий кислород, который хранил в изобретенном им сосуде, получившем название сосуда Дьюара. Сосуд Дьюара — это колба с двойными стенками, из пространства между которыми выкачан воздух Теплопроводность разреженного газа между стенками настолько мала, что температура веш,ества, поме-ш,енноро в сосуд, долгое время остается постоянной. Чтобы еще более замедлить процесс передачи тепла, Дьюар посеребрил стенки сосуда, (Бытовой термос — это всего-навсего сосуд Дьюара, закрывающийся пробкой.) [c.122]

    Осуществляя синтез химических веществ, можно часть обычных изотопов заменить на редкие стабильные изотопы. Например, водород-1 можно заменить на водород-2, углерод-12 — на углерод-13, азот-14 — на азот-15, а кислород-16 — на кислород-18. С помощью таких жченых соединений можно изучать механизмы реакций, происходящих в живых тканях. Новатором в такого рода работе был американский биохимик Рудольф Шонхеймер (1898—1941), который, используя водород-2 и азот-15, провел важные исследования жиров и белков. После окончания второй мировой войны такие изотопы стали более доступны, что позволило провести более тщательное изучение механизмов реакций. Примером того, какую роль могут сыграть изотопы, служит работа американского биохимика Мелвина Келвина (род. в 1911 г.). В 50-х годах XX в. он применил углерод-14 для изучения механизма реакций фотосинтеза. Работу эту Келвин проделал с такой обстоятельностью, которая всего лишь двадцать лет назад считалась совершенно невозможной. [c.173]

    Окись этилена получают также с катализатором, находящимся в исе-вдоожижепном слое [20]. При исиользоваппи в качестве окисляющего агента воздуха содерлоние этилена в газовой смесп должно быть ниже 2,9%. Температура реакции лежит между 260 и 290°, продолжительность реакции 1—4 сек. Когда работают с чистым кислородом, температура реакции может быть 230—240 . [c.185]

    Получение полиэтилена нри высоком давлении. Полиэтилен впервые был получен при высоком давлении английской фирмой Империал Кемикалс Индастри [59]. Способ получения заключается примерно в том, что этилен при температуре 120—130° и давлении 1000— 20ОО ат полимеризуется в присутствии небольших количеств чистого кислорода. Молекулярный вес полимернзата получается тем больше, чем ниже температура полимеризации. Практически, однако, оптимальной рабочей температурой признана 120—130°, потому что уже при этих условиях температура плавления нолимеризата составляет около 110°. Полимеризация проводится при полном отсутствии растворителя. Содержание кислорода лежит практически в пределах 0,05—0,1%, считая на этилен. Время пребывания этилена в установке составляет 2—6 мин. при 10—15%-ном превращении этилена за один проход через печь. Схема работы при получении полиэтилена представлена на рис. 137. [c.222]

    К- И. Иванов с сотрудниками опубликовали результаты работы, посвященной определению пункта атаки кислорода при окислении парафинов в качестве объекта исследования был выбран н-гептан. Они прищли к выводу, что кислород атакует /3-метиленовую группу и что в качестве первичного продукта окисления получается гидроперекись гептана следующего строения СНзСН(ООН) (СН2)4СНз [121]. [c.587]

    Диметилгидразин легко самовоспламеняется с окислителями на основе азотной кислоты. С жидким кислородом он воспламеняется от постороннего источника зажигания. Период задержки самовоспламенения диметилгидразина с дымящей азотной кислотой очень низкий (несколько лшллисекунд) и обеспечивает легкий запуск и устойчивость работы двигателя в различных условиях эксплуатации. [c.124]


Смотреть страницы где упоминается термин Работа в. Кислород: [c.58]    [c.131]    [c.153]    [c.436]    [c.483]    [c.493]   
Смотреть главы в:

Практикум по неорганической химии Издание 2 -> Работа в. Кислород




ПОИСК







© 2024 chem21.info Реклама на сайте