Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Восстановление катализаторов

    Установки каталитического крекинга. Реакции, протекающие при каталитическом крекинге нефтяного сырья, в основном аналогичны реакциям, протекающим при термическом крекинге. Однако применение катализаторов, ускоряющих химическую реакцию, существенно изменяет характер процесса. Широкое распространение получили два типа установок в которых каталитический крекинг сырья и регенерация катализатора осуществляются в сплошном, медленно опускающемся слое катализатора, состоящего из шариков диаметром 3—5 мм, и в которых процесс каталитического крекинга и регенерация катализатора протекают в кипящем (псевдоожиженном) слое пылевидного катализатора. К основному оборудованию установок каталитического крекинга относят реакторы, в которых контактируют пары сырья с катализатором регенераторы, в которых происходит восстановление катализатора, и пневмотранспорт, предназначенный для перемещения катализатора из регенератора в реактор и из реактора в регенератор. В пневмотранспорт входят воздуходувки, тонки под давлением для нагрева воздуха, загрузочные устройства (дозеры), стволы пневмоподъемников, сепараторы с циклонами, устройство для удаления крошки, мелких частиц, воздуховоды и катализаторопроводы. Каталитический крекинг нефтяного сырья ведут при давлении 50—150 кПа и температуре 450—500 °С. [c.82]


    Активными центрами реакции гидрообессеривания являются анионные вакансии, на которых происходит адсорбция сераорганических соединений. Обработка сероводородом способствует лишь более мягкому восстановлению катализатора, а введение серы не изменяет активность катализатора. [c.97]

    В настоящее время известно несколько вариантов процесса оксосинтеза, которые отличаются друг от друга в основном способом производства и восстановления катализатора. Наиболее распространенными методами являются  [c.172]

Рис. 1Х-4. Схема рециркуляции водорода при восстановлении катализатора. Рис. 1Х-4. <a href="/info/25600">Схема рециркуляции</a> водорода при восстановлении катализатора.
    После окончания восстановления аппарат охлаждают азотом и затем заполняют углекислотой. Восстановленный катализатор постоянно сохраняют в атмосфере углекислоты или под слоем масла. Полученный, таким способом катализатор применяют для синтеза при нормальном и среднем давлениях. [c.85]

    Существуют два предположения о механизме окисления коксовых отложений [3.32]. При первом предположении исходят из возможности образования кислород-углеродных комплексов при адсорбции кислорода на поверхности углерода. Роль катализатора в данном случае сводится к ускорению процессов образования или распада этих комплексов. При втором предположении катализатор рассматривают как переносчик кислорода между газовой фазой и углеродной матрицей путем попеременного окисления-восстановления катализатора. К такого типа катализаторам обычно относят оксиды переходных металлов. [c.69]

    Необходимыми условиями нормальной работы реакторной части являются также равномерная подача необводненного сырья в реактор, подача достаточного количества перегретого водяного пара в зону отпарки, поддержание нормальных уровней катализатора в бункерах реактора и регенератора, непрерывное удаление мелочи из потока циркулирующего катализатора и нормальная регенерация катализатора в регенераторе до содержания кокса на восстановленном катализаторе не более 0,1—0,2% вес. [c.146]


    Каталитические реакции в гомогенных системах (гомогенный катализ). В этом случае катализатор образует с реагентами одну фазу. Реакции такого типа могут проходить в газовой или жидкой фазах. Часто ход подобных реакций связан с образованием промежуточного соединения одного из исходных веществ с катализатором. Это соединение подвергается затем распаду с образованием продукта и восстановлением катализатора. Повышение скорости реакции в присутствии катализатора основано на уменьшении энергии активации этой реакции вследствие изменения механизма ее протекания. [c.227]

    Обычно промежуточное соединение возникает в результате относительно быстрой обратимой реакции и постепенно распадается с восстановлением катализатора. В связи с этим в реакции (У1П-98) может установиться равновесие, т. е. справедливой будет зависимость  [c.228]

    Температура восстановления окиси никеля водородом снижалась при добавлении окислов других металлов. На основании изучения характера снижения температуры восстановления катализатора и влияния добавки других металлов на полимеризующую активность катализатора пришли к выводу, что активность катализатора зависит не только от температуры восстановления, но главным образом от кристаллической структуры. [c.205]

    После загрузки в колонну синтеза катализатор восстанавливают в токе водорода при температуре 300—400° С. О степени восстановления судят по уменьшению количества выделяющейся воды. Процесс восстановления катализатора продолжается 3—5 суток. [c.9]

    Важное значение имеет правильная организация обслуживания агрегатов конверсии метана и окиси углерода, которая включает следующие операции подготовку к пуску, разогрев и восстановление катализатора, пуск, ведение нормального режима, остановку. [c.43]

    Поведение большинства оксидных катализаторов можно рассматривать в рамках представлений о стадийном механизме окисления-восстановления катализатора. [c.11]

    Сплавной никель-железо-алюминиевый катализатор. Предварительное восстановление катализатора не требуется [c.153]

    Поэтому отработанный катализатор по вертикальной трубе с помощью воздуха, подаваемого из воздуходувок, направляется в регенератор, где происходит восстановление катализатора путем выжигания кокса. [c.193]

    В реактор загружают 40 мл испытуемого катализатора, продувают установку последовательно азотом и водородом и под давлением водорода проводят опрессовку. Обеспечив необходимую герметичность аппаратуры, приступают к восстановлению катализатора в атмосфере водорода, очищенного от примесей СО, СО2, НгЗ, Н2О и МН.з. Для осушки водорода его пропускают через емкость, заполненную активной окисью алюминия, прокаленной при 500° С. Давление водорода составляет 40 кГ см , а кратность циркуляции— 120 мл ч. Эту операцию проводят 12 ч, выдерживая следующий режим  [c.174]

    По окончании восстановления катализатора скорость потока водорода снижают до 20 л/ч и включают подачу сырья со скоростью 100 мл/ч. В этих условиях проводят стадию гидрирования также в течение 24 ч. [c.181]

    Сушка и восстановление катализатора. [c.66]

    Тем не менее имеется ряд патентов на методы сульфидирования катализаторов гидрообессер гваиия, отличающиеся условиями обработки и сульфидирующим агентом. Большая роль отводится сероуглероду [пат. США 3516926], предлагаются меркаптаны (С1—С20) [пат. США 4111796], диметилсульфид [пат.Англин 1553616], растворенные в нефтепродукте, сероводород и низкомолекулярные сульфиды в смеси с водородом [ пат. Японии 53-122692, США 3166491], сероводород, растворенный в нефтепродукте [пат. США 4213850] и пр. Разновидностью сульфидирования сероводородом в смеси с водородом является прием загрузки элементарной серы непосредственно в реактор, на слой катализатора и обработки ее ВСГ при постепенно повышаемой температуре до 200 °С [ 80, пат. США 4177136]. В связи с многообразием методов сульфидирования сформулировать требования по выбору условий обработки однозначно весьма трудно. Особенно разноречивые мнения по влиянию предварительного восстановления катализатора водородом на последующее сульфидирование. Однако в последних публикациях утверждается, что глубокое восстановление водородом, например, при высоких температурах (400 °С и выше) отрицательно влияет на образование комплексов, определяющих активность катализатора [39, 72, 81], но необходимость водорода при активации обязательна [80]. На основе исследований с учетом возможности реализации технологии активации катализатора ряд известных вариантов сульфидирования катализатора можно, в порядке предпочтительности, расположить следующим образом а) смесью сероводорода с водородом б) низкомолекулярным серусодержащим соединением в среде водорода в) низкомолекулярным серусодсржащим соединением в потоке легкого [c.99]

    Водород в продуктах реакции отсутствует, что свидетельствует о протекании реакций окислительного дегидрирования. Кислород для реакции подводится из объема катализатора. При восстановлении катализатора наблюдается период постоянной скорости реакции окислительного дегидрирования. Независимо от условий проведения процесса периоду постоянной скорости реакции соответствует съем 11 —13 см кислорода с 1 г катализатора. Окислительная регенерация катализатора восстанавливает его активность. [c.685]


    Сушка и восстановление катализатора. Сушка катализатор и одновременно его восстановление осуществляются водородсодер жащим газом после повторного испытания системы на герметичность Для повышения активности свежий катали -атор активируют в те чение нескольких часов водородом при 300 С. При этом окись мо либдена (окись никеля) восстанавливается. Молибден (никель меняет свою валентность от высшей к более активной — низшей Режим сушки катализатора следующий  [c.122]

    В целях сокращения потерь МЭА пуск блока рекомендуется осу ществлять на конденсате водяного пара. Подачу в систему раствор МЭА и вывод блока на режим необходимо проводить до операци) сушки п восстановления катализатора. [c.124]

    Другие исследователи (Г.К. Боресков, Марс —Ван Кревелен) б(1лее доказательно утверждали, что окислительно —восстановительный каталитический процесс протекает стадийно посредством в аимодействия восстановителя с кислородом поверхности окисла металла и реокислении восстановленного катализатора окислите — Л5 ми, то есть каталитическая поверхность рассматривается как химический реагент (как это представлено выше в виде реакций 1.1 — [c.160]

    Исследована [26] активность различным образом приготовленных образцов катализатора Р1/А120з в реакции гидрогенолиза этана. Различная степень дисперсности платины в катализаторах достигалась изменением содержания металла (от 0,1 до 16%) (серия А), варьированием температуры прокаливания катализатора [(6% Р1)/ /А1гОз)] на воздухе перед восстановлением (серия Б), а также изменением температуры восстановления катализаторов [(4,6—16% Р1)/ /А1гОз] водородом в интервале температур 360—700 С (серия В). Полученные кинетические данные свидетельствуют об идентичном механизме реакции на всех катализаторах с размером кристаллитов Р1 в пределах 2,3—14,7 нм. Показано, что гидрогенолиз этана является структурно-чувствительной реакцией. В сериях А и Б с ростом размеров кристаллитов Р1 увеличивалась удельная скорость реакции. В то же время в серии В наибольшую активность проявляли катализаторы с более дисперсным распределением металла. Обнаружено, что удельные активности двух катализаторов, полученных разными способами, но имеющих близкие размеры кристаллитов Р1 (11,7 и [c.92]

    Реагент, используемый в избытке, должен быть недорогим (например, воздух в приведенном выше примере). Этого правила можно не придерживаться, когда существует возможность рециркуляции избытка реагента, т. е. возвращения его в цикл после применения в предыдущем превращении. Например, так используется водород при восстановлении катализатора (Со + ТЬОг + + MgO) в синтезе бензина по методу Фищера — Тропша. В результате реакции получается смесь Hj- HaO. После конденсации [c.356]

    Весьма удовлетворительный катализатор никель на кизельгуре готовят осаждением (при перемешивании) основного карбоната никеля из моля сульфата никеля (в 0,1 молярном растворе) в присутствии кизельгура (например. Filter el) действием 1,7 моля карбоната натрия (горячий концентрированный раствор). Осадок отмывают от сульфата, сушат, разлагают карбонат и окончательно восстанавливают в токе водорода. Оптимальная температура восстановления 425°. Восстановленный катализатор содержит около 65% никеля и 35% кизельгура. Для парофазной гидрогенизации высушенный осадок (перед декарбонизацией — восста- новлением) смешивается с 4% смазывающего вещества (например, порошкообразный графит) и приготовляется в виде таблеток. После восстано-влёния эти таблетки готовы для использования в нарофазной гидрогенизации или Hie они могут быть измельчены в ступке вместе с несколькими кусочками сухого льда (для создания инертной среды) для использования в жидкофазной гидрогенизации. [c.266]

    Водород, используемый для гидрирования, должен предварительно пройти каталитическую очистку от кислорода. Чистота водорода, используемого в процессе, должна быть не ниже 99,8%. После загрузки катализатора система опрессовывается азотом до давления 220 ат. Следующей операцией является восстановление катализатора. Катализатор разогревается в колонне при 150° С. В течение 70 ч на катализатор периодически подается водород. При подаче водорода медь, содержащаяся в катализаторе в виде окиси, восстанавливается и переходит в активную металлическую форму. Контроль за ходом восстановления ведется по количеству реакционной воды, выделяющейся при этом процессе. После завершения восстановления очищенный водород компрессором 27 подается через маслоотделитель 28 в теплообменники 23 и 24, где нагревается до 200° С (в качестве тенлоагента применяются отходящие продукты гидрирования). Далее водород нагревается до 300° С в электроподогревателе 5 и направляется в колонну гидрирования. [c.96]

    Опыты по гидрированию проводят на предварительно восстановленном катализаторе при 220° С и атмосферном давлении. Для испытаний используют изооктилен, полученный после полимеризации бутан-бутиленовой фракции и отогнанный на аппарате Гадаскина. Йодное число изооктилена должно быть равным 180—220, а пределы его кипения — 105—178° С. [c.180]

    Этерификация жирных кислот спиртами может осуществляться при повышенных температурах без катализатора. Эксперименты показали, что оптимальными условиями термической этерификации являются температура 250—320° С и давление 10— ООатга. Процесс должен проводиться с избытком метанола. Гидрирование метиловых эфиров может осуществляться на медпохромовом или медноцинковом катализаторах. Однако эти катализаторы имеют сравнительно короткий период работы без регенерации. Весьма перспективным оказывается применение для восстановления эфи= ров цпнкхромового катализатора. Этот катализатор работает стабильно, однако при гидрировании эфиров образуется значительное количество углеводородов (до 6—10%). Некоторая модификация катализатора, а также тщательное осуществление процесса восстановления катализатора позволяют снизить содержание углеводородов в сырых спиртах до 2—3%. [c.101]

    Во многих работах отмечается, что железо относится к группе металлов, которые способствуют неравномерному отложению кокса на поверхности катализатора. Предполага ется [3.20], что па окисных катализаторах возможно образование поликристаллических графитов. Поочередное окисление и восстановление катализатора приводит к накоплению стерических изменепип в активном компоненте и к перестройке поверхности с изменением как скорости всех реакций, включая и коксоообразование, так и морфологии кокса. Возможно также образование угольных дендритов [3.21], чему способствует попеременное влияние окислительной и восстановительной сред, приводящее к разъеданию и разрыхлению поверхности катализатора. В таких случаях на поверхности катализатора появляются пе только выступы и неровности, способствующие возникновению трубчатых нитей, но и свобо ные частицы катализатора, играющие самостоятельную роль в образовании нитевидного углерода. Доказательством предполагаемого механизма карбидного цикла может быть общая лимитирующая стадия и общее проме- [c.64]

    Количества хемосорбирующегося газа измеряют на восстановленном катализаторе. Для этого хорошо высушенную и взвешенную с точностью до 0,0002 г навеску образца 0,1—0,5 г помещают в трубку адсорбера и обрабатывают водородом при 500° С не менее 2 ч (положение И). Скорость подачи водорода в адсорбер устанавливают равной 50 см мин. По окончании восстановления подачу водорода прекращают. Включают ввод газа-носителя гелия в систему по линии дозировочный кран — сравнительная ячейка катарометра — адсорбер — измерительная ячейка катарометра — счетчик и охлаждают образец до комнатной температуры, убрав электропечь 7. [c.92]

    После восстановления катализатора проводят цикл риформинга, состоящий из четырех последовательных непрерывных опытов при температурах 460, 480, 490 и 500 или 505° С. Давление в системе выдерживают 40 кГ см , объемную скорость подачи сырья — 2 а кратность циркуляции водородсодержащего газа — 1500 нл ч на 1 л сырья. Продолжительность опыта при каждой температуре составляет 24 ч. В качестве стандартного сырья используют бензиновую фракцию 85— 180° С прямогогпюго бензина ромашкинской или туйма-зинской девонской нефтей, предварительно подвергнутую гидроочистке на алюмокобальтмолибденовом катализаторе. [c.174]

    При восстановлении катализаторов риформинга их металлические компоненты переходят из окисного в металлическое состояние. Оптимальная температура восстановления отечественных платиновых и платинорениевых катализаторов находится в интервале 350-400°С. Единственных отличием является восстановление свежего катализатора АП-64. Этот контакт осер-нён при изготовлении, причём в виде сульфида платины - PtS2, которая восстанавливается при температуре не ниже 480°С. [c.67]

    Отличительной особенностью пуска установок на платинорениевых катализаторах является их способность к гидрогенолизу углеводородов. Гидрогенолиз (метанирование) протекает на металлических центрах катализатора после их восстановления уже при температуре 300°С. В результате происходит зауглероживание контакта. С учётом этого оптимальным вариантом восстановления можно считать восстановление электролитическим водородом, однако, в отечественной промышленной практике это практически нереализуемо. При восстановлении катализатора водородсодержащим газом гидрогенолизу подвергаются лёгкие парафины, это приводит к снижению концентрации водорода. Наиболее интенсивно гидрогенолиз протекает при приёме сырья. За счёт экзотермичности реакций в реакторах (особенно последней ступени) возможно неконтролируемое повышение температуры на 40-160°С и резкое - до 10-20% об. - снижение концентрации Н2 в ВСГ. Это приводит к быстрому закоксовыванию катализатора, снижению его межрегенерационного цикла и низкой селективности процесса. [c.67]

    Приём в ситему ВСГ, восстановление катализатора.  [c.75]


Смотреть страницы где упоминается термин Восстановление катализаторов: [c.142]    [c.122]    [c.183]    [c.357]    [c.523]    [c.41]    [c.71]    [c.11]    [c.319]    [c.24]    [c.71]    [c.80]    [c.174]    [c.71]    [c.216]   
Смотреть главы в:

Каталитический риформинг бензинов -> Восстановление катализаторов

Производство водорода в нефтеперерабатывающей промышленности -> Восстановление катализаторов

Справочное руководство по катализаторам для производства аммиака и водорода -> Восстановление катализаторов

Катализ в органической химии -> Восстановление катализаторов

Краткое руководство к практикуму по химии нефти -> Восстановление катализаторов


Справочник азотчика Том 1 (1967) -- [ c.91 , c.353 , c.407 , c.408 ]

Технология связанного азота (1966) -- [ c.25 , c.43 , c.55 , c.56 , c.280 , c.314 ]

Справочник азотчика Т 1 (1967) -- [ c.91 , c.353 , c.407 , c.408 ]




ПОИСК







© 2025 chem21.info Реклама на сайте