Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полистирол теплостойкость

    Сополимеры аценафтилена со стиролом в различных соотношениях изучили А. В. Голубева с сотр. [11611. Они установили, что полимер аценафтилена со стиролом (20 80) обладает повышенной по сравнению с полистиролом теплостойкостью при сохранении высоких диэлектрических свойств. Хороший продукт получается сополимеризацией аценафтилена с метилметакрилатом. Изучены были также сополимеры аценафтилена с изобутиленом, бутадиеном и этиленом. Изобутилен и этилен образуют с аценафтиленом продукты с низким молекулярным весом, а сополимер бутадиена дает хрупкие запрессовки [293, 290, 9771. [c.55]


    В этом полимере сочетаются свойства тефлона и полистирола. Теплостойкость его достигает 250°. [c.178]

    Так, у полистирола после тепловой обработки наблюдается увеличение предела прочности при растяжении на 5% и предела прочности при статическом изгибе на 10%. Значительное влияние отжиг оказывает на теплостойкость аморфных полимеров так, у полистирола теплостойкость повышается с 77 до 95 °С, у сополимера стирола с акрилонитрилом — с 83 до 94 °С, а у полиметилметакрилата — с 65 до 75 °С. [c.219]

    Недостатки полистирола — невысокая механическая прочность (низкая ударная вязкость), низкая теплостойкость, а также склонность к старению. Повышению механической прочности способствует армирование полистирола стекловолокном. [c.20]

    Вследствие низкой теплостойкости (75"С по Мартенсу) ПС может эксплуатироваться при температуре не выше 60°С. В отличие от полиолефинов он имеет высокую твердость, но весьма хрупок. При этом, хрупкость увеличивается в процессе эксплуатации вследствие старения материала. Этого недостатка лишен ударопрочный полистирол (УПС) и сополимеры стирола с акрилонитрилом и бутадиеном. При нагревании до температуры 300—400°С ПС деполимеризуется с образованием мономера. [c.392]

    Изделия из сополимеров стирола (около 15%) и винилкарбазола отличаются высокой теплостойкостью. Начало деформации таких изделий под нагрузкой наблюдается только при 127° (вместо 70—75 " для изделий из полистирола). Преимуществом этого сополимера перед сополимером стирола и акрилонитрила является сохранение хороших диэлектрических свойств, присущих полистиролу и поли-винилкарбазолу. [c.525]

    Полистирол широко применяется в электротехнической промышленности в качестве диэлектрика, для изготовления кислотоупорных труб и тары, для производства самых разнообразных бытовых изделий и др. Полистирол изотактического строения благодаря своей высокой теплостойкости может найти применение в машиностроительной промышленности. Некоторые сополимеры стирола, отличающиеся высокой стойкостью к ударам (ударопрочный полистирол), применяются для изготовления крупногабаритных изделий (ванн, деталей холодильников и др.). [c.385]

    Дпя создания на основе полистирола и его сополимеров материалов с высокими огнезащитными свойствами были предложены и разработаны принципы поверхностной химической модификации в процессе переработки С этой целью разработан метод поверхностного хлорирования полистирола. Установлено, что введение хлора в структуру полистирола и его сополимеров существенно снижает горючесть пластиков. Проведенные физико-механические испытания модифицированных материалов свидетельствуют о возрастании разрушающего напряжения при разрушении и теплостойкости таких материалов [c.77]


    Непропитанные обожженные углеродные материалы, а также графиты используются в химической промышленности весьма ограниченно, так как в аппаратах для химических производств требуется непроницаемость материала. В качестве пропитывающих веществ могут быть использованы различные смолы полихлорвинил, полистирол, анилино-формальде-гидные и фурфурольные. Образцы материалов, пропитанных этими смолами, имеют недостаточную стойкость в щелочах, низкую теплостойкость, а иногда и малую глубину проникновения пропитывающего вещества. Лучшие результаты теплостойкости на пропитанных графитах находятся на уровне 200 °С. В табл. 49 приведены данные для некоторых [c.258]

    Полистирол — термопластичный материал с высокими диэлектрическими показателями. Он химически стоек, водостоек и бесцветен, однако имеет низкую механическую прочность и невысокую теплостойкость. В связи с этим модификация свойств полистирола направлена на улучшение его перерабатываемости, повышение его ударопрочности, огне- и атмосферостойкости, прозрачности. Улучшение качества и придание требуемого комплекса свойств полистиролу достигается путем введения в него различных добавок, а также способом химической модификации (блочная и привитая сополимеризация). Получение полистирольных пластиков с новыми качественными характеристиками расширяет сферу их применения в промышленности. [c.376]

    Несомненно, что высокая теплостойкость кардовых полиарилатов, как впрочем и других кардовых полимеров (см. ниже), обусловлена повышенной жесткостью полимерной цепи таких полимеров. Это вызвано тем, что боковая циклическая группа в них образует с одним из элементов основной макромолекулы циклический фрагмент, а не связана простой одинарной связью, как в большинстве полимеров (даже если сама боковая группа и имеет циклическое строение, как, например, в полистироле). [c.111]

    При низкой температуре длительнее других полимеров сохраняет свои упругие свойства фторопласт-3, не утрачивая их даже при температуре —150 С, Самой низкой морозостойкостью из перечисленных термопластов обладают полипропилен и полиамиды. Ползучесть изделий из полиэтилена становится заметной при 60 °С, из полистирола, полиамидов, фторопласта-3—при 70—80 С. Наибольшей теплостойкостью (способностью сохранять форму при одновременном действии повышенной температуры и нагрузки) обладают полиформальдегид и поликарбонат. Термическая деструкция пластиката начинается при 145—150 С, остальные литьевые массы начинают разрушаться при температуре выше 200 С. [c.540]

    Наряду с этим они имеют низкую теплостойкость (80—90° С). Однако в настоящее время разработаны способы получения сте-реорегулярного полистирола, теплостойкость которого составляет 220—230° С. [c.305]

    Детали высокочастотной изоляции. Обладает высокими элекроизо-ляционными свойствами и повышенной (в сравненци с полистиролом) теплостойкостью. Свойства мало меняются в условиях относительной влажности 98% при температуре 50°. Пригоден для работы с нагревом до -f 120°С [c.132]

    Повышенная по сравнению с полистиролом теплостойкость. Высокие электроизоляционные свойства. Рекомелдуется для деталей высокочастотной изоляции [c.14]

    Styron 400 — полистирол. Теплостойкость 98° обладает незначито,пьной усадкой при переработке. Предназначен для вакуумного формования. (149, 307) [c.215]

    Стирол легко образует сополимеры со многими мономерами акрилонитрилом (СП), метилметакри-латом (МС), бутадиеном (СКС), дивинилбензолом и др. Эти сополимеры обладают более высокой теплостойкостью, механической прочностью и меньшей склонностью к старению, чем полистирол. [c.20]

    Большое количество исследований проведено в направлении модифицирования свойств полистирола. Существенным недостатком этого полимера является возникновение в нем больших внутренних напряжений уже в процессе изготовления изделий. В связи с низкой упругостью полистирола даже при сравнительно небольшой внешней нагрузке на изделиях из полистирола могут появиться многочисленные трещины. Простой сополимер стирола с мономером, придающим полимеру большую внутреннюю пластичность, обладает пониженной температурой стеклования (для полистирола 7 =80°). Низкая теплостойкость, свойственная полистиролу (и без внутренней пластификации), ограничивает его широкое практическое применение. Значительно большей теплостойкостью обладают блоксополимеры полистирола с сополимером стирола (40%) и бутадиена (60%) или акрилонитрила (40%) и бутадиена (60%). Блоксополимеризацию проводят методом механической деструкции смеси полистирола и указанных сополимеров. После 20-минутного перетирания этой смеси полимеров в атмосфере азота при 120—150° в закрытом смесителе образуется блоксополимер. Блоксополимер имеет значительно более высокую прочность, особенно при ударных нагрузках, чем полистирол (удельная ударная вязкость блоксополимера составляет 25—30 кг-см1см , полистирола 5—15 кг-см см ), в тоже время температура его стеклования заметно не изменяется. [c.544]

    Сплавлением полистирола с полиметилфенилсилоксаном на нагретых вальцах повышают теплостойкость полимера, сохраняя его диэлектрические свойства. Заменой полиметилфенилсилоксана фторопластом-4 достигают одновременного повышения ударной вязкости материала. [c.806]

    ТЕПЛОПЕРЕДАЧА, см. Теплообмен. ТЕПЛОПРОВОДНОСТЬ, см. Теплообмен. ТЕПЛОСТОЙКОСТЬ полимеров, Т. стеклообразных н кристаллич. иолимеров — сиособиость сохранять твердость (т. е. не размягчаться) прп повышении т-ры. Количеств, критерий Т. в атих случаях — т-ра, ири к-рой деформация образца в условиях действия пост, нагрузки не превышает нек-рую величину. Верх, предел Т. стеклообразных полпмеров — стеклования температура, кристаллических — т-ра плавления (см. Плавление). Определяют Т. стандарти-зов. методами, иаир. по Мартенсу или ири изгибе образца. Значения Т. ио Мартенсу для нек-рых термопластов (в °С) винипласт — 65—70, иоли-е-капроамид — 50—55, поликарбонат па основе бисфенола А — 115—125, полиметилметакрилат — 60—80, полистирол — 80. [c.564]


    Полипропилен проник и в производство предметов домашнего обихода, успешно конкурируя в этой области с другими термопластами. Так, он начинает вытеснять полистирол в производстве столовой и кухонной посуды. Полистирол уступает изотактическому полипропилену по прочности и теплостойкости (деформируется при температуре кипения воды) и хуже сопротивляется удару (быстро растрескивается при употреблении). К тому же изделия из полипропилена не имеют запаха. Как полагают, детские ванночки из полипропилена, которые выдерживают стерилизацию горячей водой, со временем будут пользоваться большим спросом, чем полиэтиленовые. Благодаря тому, что по. шпропиден обладает хорошими физико-химическими свойствами, не абсорбирует запаха и не сообщает постороннего вкуса, из него изготовляют кофе-варки [31]. [c.303]

    АБС-пластик-непрозрачный, обычно темноокрашенный материал, обладающий высокими влаго-, масло-, кислото-и щелочестойкостью, устойчивостью к действию орг. р-ри-телей. По мех, прочности, ударной вязкости, теплостойкости и жесткости превосходит ударопрочный полистирол, Атмосферостойкость пластика относительно невысока, что обусловлено присутствием в макромолекуле каучука не-насыщ, связей. Повышение атмосферостойкости достигается заменой полибутадиена на насыщ, эластомер, напр, бу-тилакрилатный (ААС-пластик), бутилкаучук, двойной эти-лен-пропиленовый, хлориров. полиэтилен. Прозрачную модификацию пластика получают, используя 4-й мономер-метилметакрилат (при этом повышается и атмосферостойкость сополимера). [c.19]

    Полиолефиновые клеи получают на основе гомо- и сополимеров этилена или полиизобутилена. Могут содержать наполнители, др. полимеры (атактич. полипропилен, прир. смолы, низкомол. полистирол), модификаторы, придающие повыш. адгезию и текучесть в расплавл. состоянии (малеиновый ангидрид, акриловая к-та, капролактам, воск, парафин) или повыш. теплостойкость полиизобутиленовому клею (дивинилбензол), антиоксидант. Выпускают в виде гранул, пленок, лент, шнуров, порошка, волокон, а поли-изобутиленовый клей-в виде р-ров (напр., в бензине). Полиэтиленовыми клеями соединяют по технологии склеивания клеями-расплавами при 200-210 °С, полиизобутиленовы-ми-по технологии склеивания контактными клеями. Наиб, распространение получили клеи на основе сополимеров этилена с винилацетатом (склеивают при 110-140°С в течение 1-15 с). Применяют для соединения текстильных материалов в швейном произ-ве, при изготовлении упаковочных материалов, в произ-ве обуви, липких лент и др. [c.409]

    По хим. св-вам близки стиролу. Легко полимеризуются и сополимеризуются со стиролом и др. ненасыщ. мономерами. Скорость полимеризации возрастает в ряду м-М. > > стирол > И-М. > о-М. Полимеры М. отличаются меньшей вязкостью расплава и более высокой теплостойкостью, чем полистирол, причем теплостойкость тем вьш1е, чем больше содержание о-М. [c.65]

    Используют а-М. как сомоиомер в произ-ве сополимера со стиролом (САМ), нек-рых сортов АБС-пластиков, обладающих более высокой теплостойкостью, чем полистирол, и бутадиен-стирольных каучуков. Полимер а-М. используют для совмещения с ПВХ и др. полимерами с целью повышения их теплостойкости. [c.66]

    По фазовому состоянию не содержащие наполнителей (ненаполненные) ТП м. б. одно- и двухфазными аморфными, аморфно-кристаллическими и жидкокристаллическими. К однофазным аморфным ТП относятся полистирол, полиметакрилаты, полифениленоксиды, к-рые эксплуатируются в стеклообразном состоянии и обладают высокой хрупкостью. По св-вам им близки стеклообразные аморфно-кристаллич. ТП, имеющие низкую степень кристалличности (менее 25%), напр, поливинилхлорид, поликарбонаты, полиэтилентерефталат, и двухфазные аморфные ТП на основе смесей полимеров и привитых сополимеров, напр, ударопрочный полистирол, АБС-пластики, состоящие из непрерывной стеклообразной и тонкоднспергир. эластичной фаз. Деформац. теплостойкость таких ТП определяет т-ра стеклования, лежащая в интервале 90-220 °С. [c.564]

    Для получения материалов, обладающих более высокими теплостойкостью и ударной прочностью, чем П, используют смеси последнего с др полимерами и сополимеры стирола, из к-рьгх наиб пром значение имеют блок- и привитые сополимеры, т наз ударопрочные материалы (см АБС-пластик Полистирол ударопрочный), а также статистич сополимеры стирола с акрилонитрилом, акрилатами и метакрилатами, а-метилстиролом и малеиновым ангидридом Статистич сополимеры с вшшловыми мономерами получают по той же технолопш, что и П, -чаще всего суспензионной или эмульсионной сополимеризацией [c.24]

    П. у,-твердый непрозрачный бесцв. продукт плотн. 1,05 г/см 30-45 МПа ударная вязкость (без надреза) 35-70 кДж/м (в зависимости от содержания каучука) относит, удлинение 15-40% раств. в ароматич. и хлорир. углеводородах, кетонах, не раств. в воде, алифатич. углеводородах, слабых р-рах щелочей и к-т, спиртах. Пе стоек к действию пр5гмой солнечной радиации и окислению. По модулю упругости, теплостойкости, твердости, диэлектрич., реологич. и др. св-вам П. у. мало отличается от полистирола. П. у. легко поддается мех. обработке, металлизации, лакировке, склеиванию и свариванию. [c.25]

    С, полиизОйрена -73°С), пластмасс-варьируют в широких пределах (в частности, поливинилхлорида 82 С, полистирола и полиметилметакрилата ок. 100 С, поликарбоната 150°С, полиимидов 300-400°С), неорг. стекол-достигают 1000°С и выше. С.т. определяет эксплуатац. характеристики полимерных материалов теплостойкость пластмасс и морозостойкость эластомеров (каучуков и резин). л. я. Малкин. [c.425]

    По теплостойкости кремнийорганические полимеры также значительно превосходят органические. Например, потеря массы полиорганосилоксанов за 24 ч при 250 °С составляет (в зависимости от типа полимера) 2—8%, при зтих же условиях потеря массы для кацрона достигает 55,5%, для полистирола 65,6%, для глифталевого полимера 93,4%, За зто же время при 350 °С органические полимеры выгорают на 70—90%, а кремнийорганические теряют не более 20% массы, причем полиметилсилоксаны — всего 3—7%. [c.371]

    Полимеры замещенных стиролов обладают повышенной теплостойкостью. Введение алкильных заместителей и атомов галогенов в бензольное ядро повышает термическую стойкость полимера. И. полимеров замещенных стиролов применение получили полихлор-и полиметилстиролы. Теплостойкость полидихлорстирола значительно выше, чем полистирола, но наличие двух атомов хлора в ядре снижает электрическую прочность и повышает тангенс диэлектрических потерь полимера. Полиметилстиролы менее теплостойки, чем полихлорстиролы, но сохраняют высокие диэлектрические свойства. Полифторстиролы обладают повышенной химической стойкостью, теплостойкостью и высокими диэлектрическими свойствами препятствием к их Широкому применению служит сложность синтеза и полимеризации фторстиролов, тогда как хлор-стиролы и метилстиролы получаются и полимеризуются легко. [c.95]

    Общий интерес может представить сравнение термической устойчивости и сопротивления на изгиб у поливинилкарбазола и полистирола. Измерения, проведенные по методу ASTM, показали, что поливинилкарбазол устойчив и не коробится до 99—149°, а полистирол разрушается уже при 74—102°. Сопротивление изгибу, напротив, гораздо выше у полистирола, для которого оно равно 330—1300 атм, тогда как в случае поливинилкарбазола сопротивление составляет всего 100—400 атм. Электротехнические качества обоих полимеров очень близки. Винилкарбазольные смолы применяются поэтому главным образом в стационарных электроустановках, где требуются теплостойкие материалы. Заметим также, хотя это и имеет только академический интерес, что среди обычных мономерных соединений винилкарбазол обладает самым высоким показателем преломления, равным 1,683 [171а]. [c.265]

    Основным типом катионных ионообменных смол являются иолизлектролиты, получаемые на основе полистирол — дивинил-бензольных сульфированных полимеров. В 1950-х гг. катионообменные смолы начали применяться в качестве мембран при электродиалнзе (для очистки различных растворов) и в топливных элементах. Использование катионообменных мембран в топливных элементах химических источников тока выявило острую необходимость создания новых полиэлектролитов, обла- дающих высокой термостойкостью и стойкостью к окислителям. Естественно, что химики прежде всего обратились к классу фторсодержащих полимеров, известному своей непревзойденной стойкостью к химическим реагентам и высокой теплостойкостью, и, прежде всего к фторированным аналогам полистиролсульфо-кислоты. Был разработан способ получения поли-а,р,р -трифтор-стирола, его сульфирования и сшивания [1]. Оказалось, что такие катнонообменные мембраны резко превосходят по термо-и химической стойкости обычные мембраны и пригодны для использования их в водород-кислородных топливных элементах источников тока. [c.178]

    Значительный практический интерес представляют полимеры 2,5-дихлорстирола, которые вследствие усиления межмолекуляр-пого и внутримолекулярного взаимодействия ароматических ядер за счет полярных групп имеют более высокую теплостойкость, чем полистирол. В отличие от последнего эти полимеры не деформируются от действия горячей воды. Благодаря симметричному расположению атомов хлора в ароматических кольцах полимера (пара-положение) дипольные моменты, обусловленные связями С — С1, взаимно компенсируются, и макромолекула полидихлор-стирола в целом неполярна. Поэтому полимеры 2,5-дихлорстнрола не уступают полистиролу по диэлектрическим свойствам, отличаясь в то же время меньшей горючестью и большей прочностью на удар. [c.288]

    Хотя обычный полистирол аморфен, в условиях стереоспецифи-ческой полимеризации можно синтезировать кристаллические изотактические полимеры, у которых теплостойкость примерно в три раза выше, чем у аморфного полимера. [c.288]

    В качестве деталей остекления, получаемых блочной полимеризацией в формах, полистирол существенно уступает полиметил-метакрилату по показателям прочности (особенно к ударным нагрузкам), теплостойкости, твердости и атмосфероустойчивости. [c.545]


Смотреть страницы где упоминается термин Полистирол теплостойкость: [c.447]    [c.447]    [c.205]    [c.202]    [c.662]    [c.216]    [c.456]    [c.222]    [c.371]    [c.247]    [c.25]    [c.95]   
Энциклопедия полимеров Том 3 (1977) -- [ c.3 ]

Переработка термопластичных материалов (1962) -- [ c.556 ]

Справочник по пластическим массам (1967) -- [ c.90 , c.92 , c.93 ]




ПОИСК







© 2025 chem21.info Реклама на сайте