Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полимеры кремнийорганические теплостойкость

    Растворы кремнийорганических полимеров в ароматических углеводородах и других органических растворителях используются как лаки, на основе которых производят влаге- и теплостойкие эмали, Силоксановые эмали, имеющие красивые тона и оттенки, применяют для окрашивания фасадов зданий, сооружений и конструкций, а также для покрытий по шиферу. Эти эмали используют в качестве антикоррозионных покрытий. [c.189]


    Состав клея. Наиболее часто для приготовления К. к. применяют кремнийорганические полнмеры, содержащие в основной или боковой цепи фенильные ядра, наличие к-рых обусловливает энергетич. устойчивость силоксановой связи и, следовательно, теплостойкость полимера. К. к., предназначенные для склеивания кремнийорганич. резин, приготавливают па основе кремнийорганических каучуков. [c.575]

    Отличительная особенность этой группы полимеров состоит в том, что цепь макромолекулы построена из чередующихся атомов кремния и кислорода. Присутствие силоксановой связи —8] — О — 81— сближает эти вещества с такими неорганическими полимерами, как кремнезем, кварц, асбест, и природными силикатами, придавая кремнийорганическим полимерам большую теплостойкость с другой стороны, благодаря наличию боковых алкильных или арильных групп, связанных с атомами кремния силоксановой цепи, такие высокомолекулярные соединения во многом похожи на другие органические полимеры  [c.320]

    Полимеры кремнийорганических соединений пока мало применяют в качестве химически стойких материалов, но их высокая теплостойкость и устойчивость по отношению к агрессивным средам создают все предпосылки для более широкого их применения. [c.246]

    Различные заместители в метильных группах придают разные свойства, специфические для данного полимера но общим является то, что силоксановая связь — это очень прочная связь, сохраняющая стойкость при высоких температурах. Поэтому кремнийорганические полимеры значительно более теплостойки, чем отвечающие им обычные органические полимеры их прочность в меньшей мере зависит от колебаний температуры. [c.205]

    Определение азотсодержащих кремнийорганических соединений. Азот и карбоксилсодержащие кремнийорганические соединения находят применение в производстве полимеров, а также гидрофобных и теплостойких материалов, получаемых на их основе. Описанные в литературе методы анализа этих соединений основаны [c.166]

    Прочностные свойства и теплостойкость могут быть повышены, если применять в качестве связующего материала эпоксидные, полиэфирные или кремнийорганические полимеры. [c.248]

    Композиции кремнийорганических полимеров с полиэфирами, эпоксидными и фенольными смолами и другими полимерами, содержащими полярные группировки, являются основой многих теплостойких клеев, в том числе конструкционного назначения [120]. В последнее время разработаны клеевые композиции, обладающие хорошими адгезионными свойствами, на основе полиорганосилоксанов [128]. [c.308]


    Теплостойкие Р., предназначенные для длительной эксплуатации при 150—200°С (основа — этилен-пропиленовые каучуки, бутилкаучук). Р., эксплуатируемые при более высоких темп-рах, изготовляют из элементоорганич. каучуков, напр, кремнийорганических, наполняемых специально обработанной двуокисью кремния, из фторсодержащих каучуков, а также из неорганич. полимеров типа полифосфонитрилхлорида (см. Полифосфазены). [c.157]

    Термореактивные кремнийорганические полимеры применяют для изготовления изоляционных материалов, слоистых пластиков, красок и пропиточных составов. Особенно высокой теплостойкостью и механической прочностью обладают слоистые пластики на основе кремнийорганических полимеров и стекловолокна или стеклоткани. [c.179]

    В 40-х годах возникает производство полиамидов и кремнийорганических полимеров —силиконов. Полиамиды применяются в основном для изготовления синтетических волокон и машиностроительных-деталей, а силиконы, благодаря высокой термостабильности и теплостойкости, — для производства теплостойких деталей и в качестве силиконовых жидкостей для гидрофобизации и смазки. [c.11]

    В последние годы распространение получили каучукоподобные вещества, образующиеся при поликонденсации бифункциональных соединений. Так, из дихлорпроизводных органических соединений и полисульфидов щелочных металлов получают маслостойкие полисульфидные каучуки. Адипиновая кислота и гликолп являются сырьем для производства полиуретановых каучуков. Из алкил(арил)хлорсиланов получают кремнийорганические каучуки, обладающие высокой теплостойкостью. В последнее время получают также каучуки, содержащие другие элементы в главной и боковых цепях. Использование элементоорганических мономеров открывает широкие возможности синтеза каучукоподобных полимеров и пластических масс, отвечающих все возрастающим требованиям современной техники. [c.240]

    Многие элементорганические полимеры, т. е. органические соединения, в основную цепь которых входят кремний, металлы и некоторые другие элементы, отличаются высокой теплостойкостью. Ценными техническими свойствами обладают, например, соединения, содержащие фосфор, титан и бор, однако до сих пор щироко применяются лишь кремнийорганические полимерные материалы. [c.296]

    В современной технике приобретают все большее значение материалы на основе кремнийорганических полимеров. Они сочетают ценные свойства органических полимеров (эластичность, пластичность) с преимуществами силикатных материалов (теплостойкость, морозостойкость, малая усадка). [c.611]

    Диапазон рабочих темп-р наиболее распространенных полимерных материалов на основе карбоцепных полимеров обычно не превышает 100—150 °С. При более высоких темп-рах происходит резкое изменение М. с. (уменьшение жесткости, прочности, твердости), связанное с приближением к темп-ре текучести аморфных или темп-ре плавления кристаллич. полимеров (см. Теплостойкость). Вплоть до темп-р 300—400 С способны сохранять прочность и жесткость нек-рые гетероцепные полимеры, напр, кремнийорганические, тсо-лифениленоксиды, полиимиды, полибензимидазолы. Изменение М. с. перечисленных полимеров обычно бывает связано не с изменением агрегатного состояния, а с термической деструкцией (см. Термостойкость). [c.118]

    Высокая термостойкость кремнийорганических покрытий, напол-венных алюминиевой пудрой, объясняется тем, что полиорганосилоксаны содержат ОН-группы, которые, реагируя с металлическим алюминием, образуют полиорганоалюмосилоксаны — более теплостойкие полимеры. Повышению теплостойкости способствует также происходящее при этом дополнительное химическое структурирование [c.194]

    Благодаря высокой термостойкости кремнийорганических полимеров, кремнийорганические пластмассы отличаются высокой деформационной теплостойкостью и устойчивостью к термической и термоокислительной деструкции и способны длительно (сотни и тысячи часов) работать при 300—400° С и кратковременно выдер-жг1вать воздействие значительно более высоких температур. Они хорошо работают также при низких температурах (—60 С и ниже), обладают удовлетворительной водостойкостью, устойчивы к действию многих растворителей, различных химических агентов, топлив и масел. Кремнийорганические пластмассы имеют хорошие диэлектрические свойства в широком температурном интервале и при высокой влажности (в том числе в условиях тропического климата). Дугостойкость некоторых марок кремнийорганических пластмасс совершенно уникальна. Их механические показатели несколько ниже средних для термореактивных пластмасс. [c.127]

    Кремнийорганические соединения — представители более широкого класса так называемых элементоргантеских соединений. Полимерные элементорганические соединения сочетают термическую стойкость, присущую неорганическим материалам, с рядом свойств полимерных органических веществ. В настоящее время разработаны методы синтеза полимерных фосфор-, мышьяк-, сурьма-, титан-, олово-, свинец-органических, бор-, алюминий- и других элементорга-нических соединений. Большинство из этих соединений в природе не встречается. Усиленно исследуются теплостойкие полимеры, в основе которых лежат цепи  [c.481]


    Силиконы (полиоргапосилоксаны) —кислородосодержащие высокомолекулярные кремнийорганические соединения. Силиконовый каучук (силастик) обладает высокими электроизоляционными качествами и большой термостойкостью и морозостойкостью. Он сохраняет эластичность в интервале температур от —60 до +200 " С и широко применяется в современной технике (жароупорные прокладки, клапаны, мембраны, детали прожекторных установок, электроизоляционные материалы и др.). Многочисленные кремнийорганические полимеры используют для приготовления хладостойких (теплостойких) смазок, жидкостей, работающих при температурах от—100 до- -250°С, Применяют для гидрофобизации различных материалов, тканей, бумаги, стекла, керамики, строительных материалов, а также в производстве лаков и пластмасс. [c.121]

    Полиалюмофенилсилоксановый лак может применяться в качестве компонента связующего в производстве теплостойких пластических масс и стеклотекстолитов и как отвердитель органических и кремнийорганических полимеров. [c.248]

    См лит. при ст. Каучуки синтетические. КРЕМНИЙОРГАНИЧЕСКИЕ КЛЕИ, получают на основе кремнийорг. полимеров. Могут содержать отвердитель (обычно пероксиды, амины, щелочи), эпоксидные смолы, каучуки и др. орг. полимеры, повышающие эластичность и прочность клеевой прослойки полиорганометаллосилокса-ны, улучшающие термостойкость, эластичность и адгезию наполнитель (асбест, ВЫ, Ст Оз, 2пО и др.) и р-рители (этил-ацетат, этанол, толуол и др.). Выпускаются в виде вязких жидкостей или паст. Отверждаются 2—3 ч при 150—270 °С, с помощью силазанов — при комнатной т-ре. В отвержденном состоянии отличаются высокой тепло-, термо- и атмо-сферостойкостью работоспособны от —60 до 600°С (длительно) и до 1000 С (кратковременно). Примен. для склеивания металлов, теплостойких неметаллич. материалов (напр., стеклотекстолита, графита, асбоцемента, теплостойких резин), приклеивания к металлам теплоизоляции и теплозащитных покрытий в авиац., ракетной и др. отраслях пром-сти. [c.284]

    По теплостойкости кремнийорганические полимеры также значительно превосходят органические. Например, потеря массы полиорганосилоксанов за 24 ч при 250 °С составляет (в зависимости от типа полимера) 2—8%, при зтих же условиях потеря массы для кацрона достигает 55,5%, для полистирола 65,6%, для глифталевого полимера 93,4%, За зто же время при 350 °С органические полимеры выгорают на 70—90%, а кремнийорганические теряют не более 20% массы, причем полиметилсилоксаны — всего 3—7%. [c.371]

    Отверждение термореактивных клеев является, наряду с подготовкой поверхностей, наиболее важной операцией в технологии С. Выбор режимов этого процесса (темп-ра, давление, продолжительность) зависит не только от природы клея, но и от типа соединяемых материалов и условий эксплуатации изделий. Соединения, образуемые эпоксидными и полиуретановыми клеями при комнатной темп-ре, имеют высокую прочность. Повышение темп-ры отверждения этих клеев приводит к получению более тепло- и водостойкого соединения с лучшими электроизоляционными свойствами. При С. реактоплаетов феноло-формальдегидными, кремнийорганическими или полиимидными клеями обязателен нагрев зоны шва, способствующий ускорению отверждения, более полному удалению растворителя и образованию полимера с большей мол. массой. Выбор темп-ры С. термопластов зависит от их теплостойкости. Склеиваемые участки нагревают в термошкафу, контактными нагревателями, с помощью токов высокой частоты или ультразвука. [c.209]

    Отверждение кремнийорганических лаков и эмалей проводится в основном при высоких (150—200 °С) или в присутствии катализаторов — при комнатных температурах. Однако при этом некоторые свойства покрытий, например теплостойкость, ухудшаются. К снижению теплостойкости приводит н увеличение длины цепи алкильных радикалов в ма-кромолекуле полимера, хотя растворимость и гидрофобные свойства улучшаются. Для большинства лаковых смол отношение Н 81 колеблется от 1,0 до 1,5. [c.213]

    Кремнийорганические клеи сохраняют прочностные свойства при высоких температурах (от 300 до 1000°С). Это возможно потому, что кремнийорганические полимеры содержат в цепи чередующиеся атомы кремния и кислорода, связи между которыми обладают высокой термостойкостью. Эти клеи предназначены для склеивания различных сталей и сплавов титана, для приклеивания к этим металлам неметаллических теплостойких материалов, работающих в условиях длительного воздействия высоких температур. Например, эпоксидно-кремнийорганиче-ский клей Т-111 отличается хорошей адгезией к различным материалам в интервале температур от —60 до 300 °С. Так, для образцов из алюминиевого сплава, склеенного этим клеем, разрушающее напряжение при сдвиге при 20 °С составляет 20 МПа (200 кг / м ), а при 200 °С —6 МПа (60 кгс/см ). Для фенолокремнийорганического клея марки ВС-ЮТ для соединений из нержавеющей стали прочность при 20 °С составляет 20 МПа (200 кгс/см ) и при 200 °С — [c.20]

    Политетрафторэтилен в обычных условиях и при повышенных температурах является хорошим диэлектриком [1210—1212]. Так, Чантер [1213] указывает, что в области высоких напряжений из всех видов полимеров только фторопласты и кремнийорганические пластики обладают удовлетворительной стойкостью к образованию проводящих мостиков на поверхности полимерного материала. Как показал Ондрейчик [1240], при испытании в течение шести месяцев при 250° величина диэлектрических потерь (1 6), диэлектрическая проницаемость, сопротивление и электрическая прочность политетрафторэтилена практически не меняются. Результаты испытаний позволяют рекомендовать политетрафторэтилен для изготовления теплостойкой изоляции. проводников, использующихся в авиации, ракетной и электронной технике. [c.409]

    Лаки и краски. Полиорганосилоксаны благодаря своей высокой теплостойкости находят широкое применение для производства термостойких лаков и красок для защитных покрытий [206—213] и электроизоляционных лаков и эмалей [214— 217]. Преимущественное значение в качестве лаковых смол имеют полиметилфенилсилоксаны, свойства которых были подробно исследованы в зависимости от молекулярного соотношения метильных и фенильных групп в молекуле полимера [218]. Кремнийорганические лаки являются преимущественно лаками горячей сушки, в связи с чем в литературе опубликован ряд работ, посвященных изучению процессов высыхания покрытий и отверждения лаковой пленки при повышенных температурах [219, 220], а также указаны ускорители отверждения [221]. Значительное место в патентной литературе занимают данные о получении лаковых полимеров методом совместного гидролиза [c.388]

    Поразительное открытие возможности промышленного применения кремнийорганических полимеров, сделанное почти через % столетия после первого синтеза кремнийорганических соединений, не было, однако, так уже сюбодно от подражания природным образцам. Советский ученый Андрианов [137], первый указавший на возможность промышленного использования силиконов, так отзывается об этом По теплостойкости идеальным является плавленый кварц, имеющий к тому же хорошие электрические свойства, однако он не обладает гибкостью. Превосходный и пластичный диэлектрик—полистирол недостаточно устойчив к температуре. Обширные исследованные области синтеза электроизолирующих смол охватывают продукты, обладающие свойствами, промежуточными между кварцем и полистиролом, и мы можем с уверенностью сказать, что искомый идеальный диэлектрик, находится не вне, а внутри упомянутых границ (т. е. кварца и полистирола. —Примечание авторов). Решение этой важной народнохозяйственной задачи зависит от разработки подходящих способов полу- [c.15]

    Электроизоляционные материалы, лаки и краски. Общие вопросы использования кремнийорганических полимеров в качестве диэлектриков рассмотрены в ряде ра- от 508-529 Благодаря своей высокой теплостойкости полиорганосилоксаны находят щирокое применение в электропромышленности в качестве теплостойких пропиточных и клеящих лаков для изоляции класса зо-537 Термоэластичность кремнийорганических лаков при 180, 200 и 220° С значительно выше, чем у лаков на основе органических полимеров 5з -54о но эти лаки требуют горячей сушки, продолжительность которой может быть сокращена при введении катализаторов 41 или активных наполнителей 542. в литературе описаны лаки с пониженной температурой сушки а также охарактеризованы отдельные марки электроизоляционных лаков, их свойства и применение для изготовления лакотканей, слюдяной изоляции 5бз и эмалирования проводов Имеются указания о применении жидких кремнийорганических диэлектриков для пропитки конденсаторов 562-564 и полимеров для защиты полупроводниковых устройств 565. [c.554]

    Современная техника выдвигает в качестве одного из важных требований получеиие теплостойких полимеров, необходимых для различных областей электротехники, машиностроения, авиационной техники. Располагая такими материалами, можно повысить рабочие температуры машин и алектрооборудоваиия, а следовательно, увеличить удельные нагрузки и мощность моторов при одновременном снижении их веса. В настоящее время уже созданы теплостойкие полимеры — фторопласты, кремнийорганические соединения, полиарилаты и другие синтетические материалы, которые будут описаны ниже в этой и следующих главах. [c.177]


Библиография для Полимеры кремнийорганические теплостойкость: [c.318]   
Смотреть страницы где упоминается термин Полимеры кремнийорганические теплостойкость: [c.107]    [c.245]    [c.458]    [c.318]    [c.578]    [c.297]    [c.575]    [c.586]    [c.456]    [c.400]    [c.247]    [c.277]    [c.481]   
Технология элементоорганических мономеров и полимеров (1973) -- [ c.371 ]




ПОИСК





Смотрите так же термины и статьи:

Кремнийорганические полимеры



© 2025 chem21.info Реклама на сайте