Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Хлорофилл у бактерий

    Самым важным процессом в живой природе, от которого зависит существование человека, является фотосинтез. Он осуществляется растениями, содержащими зеленый пигмент хлорофилл. Микроорганизмы (дрожжи, плесневые грибы и бактерии) являются бесхлорофильными низшими растениями. Однако некоторые низшие одноклеточные растения, например хлореллы, содержат хлорофилл и, следовательно, осуществляют фотосинтез. Суммарную реакцию фотосинтеза можно записать так  [c.7]


    У всех фотосинтезирующих организмов, включая высшие растения, фотосинтез протекает в мембранных структурах. У пурпурных бактерий поглощающие свет пигменты (бактериальные хлорофиллы и каротины) встроены в мембраны, которые представляют собой складки наружной клеточной мембраны. Эти участки имеют характерную структуру и называются хроматофорами. Они состоят из соединяющихся между собой полых пузырьков, параллельно расположенных трубочек или параллельных пластинок (ламелл) диаметр всей структуры — 50—100 нм. У зеленых бактерий пигменты выстилают внутриклеточные пузырьки. В настоящее время фотосинтезирующие бактерии обитают только в серных источниках и глубоких озерах, но когда-то они были, вероятно, распространены гораздо более широко и являлись единственными фотосинтезирующими организмами на Земле. [c.25]

    Хлорофилл - наиболее распространенный биокомплекс на Земле. По современным представлениям фотосинтез в зеленом листе (и в бактериях) - это сложнейший физический, химический и биологи- [c.283]

    Пигменты— окрашенные органические вещества, присутствующие в небольших количествах в организмах. К ним относятся хлорофиллы — группа зеленых пигментов, находящаяся в растениях и некоторых бактериях. Хлорофиллы играют роль [c.353]

    Считается, что на ранней стадии существования Земли в атмосфере не было свободного кислорода. Атмосфера была восстановительной и состояла из На, СН , NHз, N2 и Н2О либо только из аммиака и метана. Химическая эволюция органического вещества началась примерно 4 млрд. лет тому назад. Возникшие гетеротрофные организмы научились использовать солнечный свет, стали независимыми и при дальнейшей эволюции не испытывали недостатка в пище. Эти свойства имеют и некоторые пурпурные бактерии, существующие в настоящее время. Они ведут себя подобно гетеротрофам и используют органические соединения, но содержат также хлорофилл, с помощью которого совершается фотосинтез  [c.61]

    Наибольший ущерб растениям причиняют дисперсные загрязнители, соединения металлов, фтора, оксиды серы и азота. Пылевые и зольные отложения на зеленой массе ограничивают процессы фотосинтеза, а соединения металлов подавляют их и действуют как клеточные яды. Соединения фтора снижают продуктивность леса, вызывая высыхание и гибель деревьев. Оксиды серы и азота повреждают зеленую массу и разлагают хлорофилл. Особенно чувствительны к ним хвойные породы деревьев. Загрязнение воздушной среды оказывает вредное воздействие на флору и через почву, где кислотные дожди уничтожают почвенные бактерии, червей, разлагают гумус, вымывают необходимые растениям элементы. [c.82]


    Гемоглобин и миоглобин —комплексы железопорфиринов с белками, выполняющие функцию фиксации и транспорта молекулярного кислорода в организмах животных. Цитохромы, имеющие аналогичную принципиальную структуру, выполняющие роль переносчика электрона в схемах фотосинтеза, дыхания, окислительного фосфорилирования и др. окислительно-восстановительных реакциях, найдены у всех животных, растений и микроорганизмов. Хлорофиллы — главные участники процессов фотосинтеза — содержатся в высших растениях, водорослях и фотосинтезирующих бактериях. [c.265]

    Я Хлорофиллы Бактерио-хлорофилл а или Ь Бактериохлорофиллы а + Ь, а + с), а + е Хлорофилл а Хлорофилл а + Ь [c.191]

    Энергия падающего света поглощается фотосинтезирующими пигментами в органеллах, называемых фоторецепторами (хлоропласты в высших растениях, пластиды в водорослях, хроматофоры в фотосинтезирующих бактериях). Преобладающим пигментом является хлорофилл любой организм, способный осуществлять фотосинтез, содержит по меньшей мере одну разновидность хлоро- [c.396]

    Магний — составная часть хлорофилла (бактерио-хлорофилла) и кофактор многих ферментов, например АТФазы. [c.349]

    Из курса биологии известно, что азот играет огромную роль в жизни. Об азоте говорят он более драгоценен, чем самые редкие из благородных металлов. Мы знаем, что он входит в состав белковых веществ — основы жизни (содержание азота в белках достигает 16—18%), а также в состав других органических соединений, в том числе хлорофилла. При недостатке азота рост растений задерживается, листья приобретают сначала бледно-зеленую окраску, затем желтеют и процесс фотосинтеза прекращается. Между тем растения не могут усваивать свободный азот из воздуха и азот органических веществ из почвы. Они извлекают азот из почвы в виде ионов аммония NH + и нитратных ионов NOa . Эти ионы образуются при участии бактерий из органических соединений азота. Однако, некоторые бактерии переводят азот в свободное состояние. [c.59]

    Ассимиляция солнечной энергии, т.е. превращение световой энергии в химическую, стартует с поглощения кванта света светособирающими молекулами (антеннами) на поверхности мембраны. Электронное возбуждение безизлучательно передается специальным молекулам внутри мембраны - димерам хлорофилла. Эти димеры хлорофилла входят в состав молекулярных образований, которые называются РЦ фотосинтеза. РЦ фотосинтеза - это достаточно жесткий молекулярный комплекс (молекулярный аппарат). Далее в РЦ происходит процесс разделения зарядов возбужденный димер хлорофилла отдает электрон первичному акцептору электрона. Этот процесс происходит в пикосекундном диапазоне времен. Например, в РЦ пурпурной бактерии в качестве первичного акцептора выступает бактериофеофитин, электрон живет сотни пикосекунд на фео-фитине и переносится на первичный хинон Рд. [c.106]

    Таким образом находясь в атмосфере, содержащей аммиак и азот, бактерии, а позже и растения, содержащие хлорофилл, должны были создать в ходе эволюции разнообразные АС, например белки, алкалоиды п др., входящие в состав растений и животных. Поскольку происхождение нефти связано в превращениями захороненного органического материала, разнообразные трансформированные АС в тех или иных количествах должны присутствовать в нефти. Их количество, состав и структура зависят от условий нефтеобразования — времени, температуры, исходного вещества, геологического окружения, деятельности бактерий, состава вод и др. Составы исходного (древнего) и современного органического материала примерно одинаковы и очень разнообразны. Поэтому кажется удивительным и до конца непонятным относительно однообразное и в целом сходное распределение АС в нефтях различного возраста и происхождения. В сущности АС могут либо быть трансформированными химическими ископаемыми, либо являться продуктом вторичных превращений азотсодержащих компонентов осажденного органического материала. Поэтому важно рассмотреть в общих чертах состав исходного органического материала и возможные пути его превращения в АС нефти. [c.61]

    Повреждения грибами имеют характерные признаки и особенности. Грибы (см. гл. 1) не содержат хлорофилла и по способу питания относятся к гетеротрофам, т. е., как и гетеротрофные бактерии, потребляют углерод из готовых органических соединений, в том числе из ядов (цианидов, фенола и др.). Размножение грибов происходит разрастанием гиф и спор. [c.31]

    Фотосинтезирующие бактерии содержат бактериохлорофиллы, у которых восстановлено кольцо II (рис. 13-19). Полоса поглощения этих соединений сдвинута относительно полосы поглощения хлорофилла а в красную сторону до - 770 нм. Основной хлорофилл зеленых серных бактерий СМогоЫит — хлоробиум-хлорофилл — имеет оксиэтильную и фарнезильную боковые цепи. К числу производных хлорофилла относятся феофитины, образующиеся в результате удаления Mg + при обработке хлорофилла слабой кислотой. В результате гидролиза сложноэфирной метильной группы образуются хлорофиллы, а при одновременном удалении метильной и фитильной групп — хлорофиллины. [c.41]


    Несмотря на то что это и не имеет прямого отношения к транспорту железа и кислорода, следует упомянуть также о получении синтетических биомиметических моделей особого парного бактериохлорофилла а [247], поскольку в процессе фотосинтеза при первичном поглощении света фотореакционными центрами молекулярных ассоциатов хлорофилла зеленых растений и фотосинтезирующих бактерий, по-видимому, происходит окисление особых парных молекул хлорофилла. Димерные производные хлорофилла, изображенные на рис. 6.6, в которых пор-фириновые макроциклы связаны простой ковалентной связью, проявляют некоторые фотохимические свойства, моделирующие in vivo особый парный хлорофилл. [c.373]

    Интересно, что бактерии пурпура содержат красящее вещество, которое очень похоже на хлорофилл, но вместо винильной группы в кольце I имеет ацетильный остаток, а в кольце II — на 2 атома водорода больше. [c.982]

    Особое место так называемых ароматических тетрапиррольных соединений - порфиринов (НгП) и их аналогов - среди огромного количества биологически активных веществ обеспечивается их участием в фундаментальных процессах жизнедеятельности, таких как фотосинтез (хлорофиллы и бактериохлорофиллы), перенос молекулярного кислорода (гемы), реакции изомеризации и перенос метильных групп (корриноиды), восстановление сульфита и нитрита (сирогем), образование метана у бактерий (фактор р4зо) и ряд других, а также их биосинтезом и широким распространением в природе. Тетрапирролы с открытой цепью (билины и фикобилины) являются продуктами распада гема в животных организмах. [c.326]

    Процессы фотосинтеза весьма детально изучаются в течение ряда лет, однако они еще ни в коей мере не могут считаться окончательно выясненными. В особенности спорной является первая стадия фотосинтеза— образование восстанавливающего первичного продукта под действием света. Мы знаем, что для этого необходимы зеленые красители листьев —хлорофилл а и в некоторых ассимилирующих бактериях соответствуюн1ую роль играет бактериальный хлорофилл . Возможно, что для процессов ассимиляции необходимы также другие пигменты так, неоднократно высказывалось мнение, что в процессах ассимиляции принимает участие -каротин. [c.983]

    Получение веществ искусственным путем — важная и увлекательная задача химии. Однако в природе имеется много химических превращений, механизмы которых пока неизвестны ученым. Раскрытие этих секретов природы должно принести огромные материальные выгоды. Так, связывание молекулярного азота в химические соединения в промышленности осуществляется в чрезвычайно жестких условиях. Синтез аммиака из азота и водорода происходит при высоком давлении Ктысячи паскалей) и температуре (сотни градусов), а для синтеза оксида азота(И) из азота и кислорода характерна температура около 3000 °С. В то же время клубеньковые бактерии на бобовых растениях переводят в соединения атмосферный азот при нормальных условиях . Эти бактерии обладают более совершенными катализаторами, чем те, которые используют в промышленности. Пока известно лишь, что непременная составная часть этих биологических катализаторов — металлы молибден и железо. Другим чрезвычайно эффективным катализатором является хлорофилл, способствующий усваиванию растениями диоксида углерода также при нормальных условиях. [c.10]

    ФОТОСИНТЕЗ в природе, образование организмами (высшими растениями, водорослями, нек-рыми бактериями) в-в клеток благодаря энергии света. У большинства организмов происходит при участии хлорофиллов. Первыми стабильными продуктами Ф., образующимися в результате передачи электронов от возбужденных под действием света молекул хлорофилла по электронотранспортной цепи, являются НАД(Ф)Н (см. Никотинамид ные коферменты) и АТФ, Они используются при ассимиляции СО2 и в др. биосинт. процессах. Ф., при к-ром происходит ассимиляция СО2, выражается суммарно ур-нием  [c.632]

    В определенных условиях хлорофилл может фотовосстанавливаться предполагают, что первым фотохимическим актом этого процесса является перенос электрона от одной молекулы хлорофилла на другую в пределах димера или (в бактериях) от молекулы бактериохлорофилла на бактериофеофитин. [c.48]

    ФОТОСЙНТЕЗ, образование зелеными растениями и нек-рыми бактериями орг. в-в с использованием энергии солнечного света. Происходит при участии пигментов (у растений хлорофиллов). В основе Ф. лежат окислит.-восстановит. р-ции, в к-рых электроны переносятся от донора (напр., Н2О, H2S) к акцептору (СО2) с образованием восстановленных соед. (углеводов) и выделением Oj (если донор электронов Н2О), S (если донор электронов, напр., H2S) и др. [c.175]

    Фотосинтезирующие бактерии способны использовать не только ввдимое, но и ближнее ИК излучение (до 1000 нм) в соответствии со спектрами поглощения преобладающих в них пигментов - бактериохлорофиллов. Бактериальный Ф. не имеет существенного значения в глобальном запасании солнечной энергаи, но важен для понимания общих механизмов Ф. Кроме того, локально бескислородный Ф. может вносить существенный вклад в суммарную продуктивность планкгона. Так, в Черном море кол-во хлорофилла и бактериохлорофил-ла в столбе воды в ряде мест приблизительно одинаково. [c.176]

    Фотосинтез можно определить как процесс фотоиндуцирован-ного электронного транспорта, конечным результатом которого является усвоение СО2. Скорость фотосинтеза зависит от интен- сивности падающего света I. Грубо говоря, скорость образования некоего субстрата пропорциональна числу поглощенных квантов. Этот неустойчивый субстрат преобразуется далее в ферментативных процессах. Опыт показывает, что для продукции одной молекулы О2 нужно и 8 молекул субстрата. Па один ферментативный комплекс или на одну молекулу обобщенного фермента (фотосинтетическая единица) приходится около 300 молекул хлорофилла (50 в фотосинтезирующих бактериях). [c.448]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Источниками железа для синтетических целей являются пищевые продукты, а также железо, освобождающееся при постоянном распаде эритроцитов в клетках печени и селезенки (около 25 мг в сутки). Простетические группы пищевых хромопротеинов (гемоглобин, миоглобин), включая хло-рофиллпротеины, не используются для синтеза железопротеинов организма, поскольку после переваривания небелковый компонент гем подвергается окислению в гематин, который, как и хлорофилл, не всасывается в кишечнике. Обычно эти пигменты выделяются с содержимым толстой кишки в неизмененной форме или в виде продуктов распада под действием ферментов кишечных бактерий. Следовательно, гемсодержащие соединения пищи не используются в качестве источника порфиринового ядра, а синтез сложного пиррольного комплекса в организме протекает из низкомолекулярных предшественников de novo. [c.504]

    Многочисленные примеры фототаксиса были обнаружены у водорослей, динофлагеллят, грибов и бактерий описано также зависимое от света движение хлоропластов в клетках водорослей. Предполагают, что у разных организмов в фотореакциях принимают участие сразу несколько пигментов или групп пигментов, действие которых обусловлено их спектрами действия. В число таких пигментов входят хлорофилл, бактериохлорофилл, каротиноиды, билипротеины, фитохром и рибофлавин. К сожалению, более подробная их идентификация пока не проводилась. [c.374]

    Спектр в эф. (и е) 773 (697), 577 (530), 391,5, 358,5, 91,1 (9,1), 20,8 (2,7), 48,1 и 73,3 в МеОН (и е) 772 (685), 608, 365, 42,0 (8,6), 15,4 и 53,9. Раств-сть р. эф., ац., МеОН, бенз., пир. н.р. петр. эф. Обнаружен в пурпурных и коричневых фотосинтезирующих бактериях, не-которьгх зеленых серных бактериях. Фазовый тест желт. -> коричн. -> зеленый. H l-число 25. Флуоресценция в EtOH 805 нм. Более уст. в очищенном состоянии, чем в сырых экстрактах. Получ. см. [АВВ 53, 228 (1954) Ат. J. Bot. 41, 718 (1954)]. Феофорбид получ. кисл. обработкой хлорофилла нет сведений о распространенности в природе. [c.193]


Смотреть страницы где упоминается термин Хлорофилл у бактерий: [c.136]    [c.278]    [c.415]    [c.16]    [c.46]    [c.624]    [c.177]    [c.177]    [c.349]    [c.26]    [c.342]    [c.256]    [c.284]    [c.641]    [c.666]    [c.667]    [c.9]    [c.5]    [c.161]    [c.161]    [c.215]    [c.357]   
Основы биохимии Т 1,2,3 (1985) -- [ c.31 ]




ПОИСК





Смотрите так же термины и статьи:

Хлорофилл

Хлорофилл хлорофилл



© 2024 chem21.info Реклама на сайте