Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коррозия транскристаллитная

    Переменные напряжения совсем не вызывают усиления общей коррозии. Ускоренное разрушение деталей происходит в результате появления сетки микроскопических трещин, переходящих в крупную трещину коррозионной усталости, механизм зарождения и развития которой сходен с таковым при коррозионном растрескивании, но приходится только на периоды растягивающих напряжений (рис. 236). Трещины коррозионной усталости могут быть как транскристаллитного, так и межкристаллитного типа. [c.337]


    Коррозия под напряжением приводит к транскристаллитному растрескиванию металла или к так называемой ножевой коррозии. [c.516]

    Методы определения скорости коррозии по потерям массы применяют для оценки равномерной коррозии. Этими методами невозможно оценивать неравномерную коррозию, межкристаллитное и транскристаллитное коррозионные разрушения. [c.79]

    Коррозионное растрескивание (рис. 10) характеризуется наличием транскристаллитных и межкристаллитных трещин. Она-возникает в условиях одновременного воздействия коррозионной среды и внешних или внутренних механических напряжений, существенно ускоряющих процесс коррозии. [c.26]

    К группе специальных лабораторных методов коррозионных исследований относят испытания, в результате которых устанавливают влияние механических нагрузок, давления, температуры, скорости потока и др. К этой же группе относятся исследования, межкристаллитной и транскристаллитной коррозии, коррозии под напряжением, коррозионной усталости, фрикцион- [c.36]

    Поверхностные дефекты, напряжения в металле и воздействие агрессивных сред могут привести к коррозии под напряжением. При этом трещина распространяется как по границам кристалла (межкристаллитное разрушение), так и через тело зерна (транскристаллитное разрушение). [c.579]

    К избирательной коррозии можно также отнести меж-кристаллитную и транскристаллитную коррозию. [c.127]

    Коррозионное растрескивание нержавеющих сталей наблюдается главным образом в сталях мартенситного класса (12% хрома). Аустенитные стали типа 18-8 более склонны к коррозии под напряжением, чем полуферритные хромистые стали. Значительное влияние на склонность к коррозии под напряжением оказывает стабильность аустенита. Характер коррозионного растрескивания в большинстве сред транскристаллитный, если сталь не склонна к межкристаллитной коррозии. Если сталь склонна к межкристаллитной коррозии, то растрескивание происходит по границам зерен. [c.276]

    Коррозионные разрушения материалов при этом определяются в основном присутствием ионов хлора, органических и неорганических хлоридов при повышенных температурах. Как правило, в этих условиях коррозия проявляется в виде глубоких питтингов, точек, транскристаллитных и межкристаллитных разрушений. [c.164]

    Глубоко проникшую межкристаллитную коррозию называют транскристаллитной (рис. П1-2, ж). [c.63]

    Местная коррозия охватывает лишь отдельные участки поверхности, остальная поверхность металла при этом не затрагивается повреждениями. Выделяют следующие основные виды местной коррозии коррозия пятнами — местная коррозия в виде отдельных пятен относительно больших размеров по площади, но небольшой глубины язвенная коррозия — коррозия островными участками меньших размеров, чем при коррозии пятнами, но значительно большей глубины точечная коррозия — местная коррозия в виде точечных поражений межкристаллитная коррозия — местная коррозия, распространяющаяся по границам кристаллитов (зерен) металла при транскристаллитной коррозии трещина может не только распространяться по границам зерен, но и перерезать тело кристаллита. [c.24]


    I—сплошная равномерная коррозия 2 — сплошная неравномерная коррозия 3 — сплошная избирательная коррозия 4 — коррозия пятнами 5 — язвенная 6 — точечная 7 — межкристаллитная 8 — транскристаллитная [c.25]

    Имеются доказательства, что при пластической деформации атомы цинка концентрируются преимущественно у границ зерен Различия в составе приводят к электрохимическому взаимодей ствию таких участков с зернами. По этой причине в ряде агрес сивных сред небольшая межкристаллитная коррозия может про исходить и без приложенного напряжения. Однако участки пла стической деформации при определенных значениях потенциала могут способствовать адсорбции комплексных ионов аммония, что в свою очередь приводит к быстрому образованию трещин. Аналогичный эффект может наблюдаться и вдоль линий скольжения (транскристаллитное растрескивание). По-видимому, выделение цинка на границах зерен является существенной причиной наблюдаемой межкристаллитной коррозии латуней в то же время наличие структурных дефектов в области границ зерен или линий скольжения играет большую роль в протекании КРН. Следовательно, разрушение медных сплавов в результате растрескивания наблюдается не только в сплавах меди с цинком, но также и со множеством других элементов, например кремнием, никелем, сурьмой, мышьяком, алюминием, фосфором [21 и бериллием [31]. [c.338]

    Коррозия под напряжением приводит к транскристаллитному рас трескиванию металла или к так называемой ножевой коррозии Если вогнутую упруго пластинку (см. рис. 240) термически обра ботать и упругие деформации перейдут в пластические (явление ре лаксации), то разности потенциалов не возникает. Таким образом при изготовлении деталей и узлов машин для снятия остаточных напряжений всегда следует термически обрабатывать изделия, если эти изделия предназначены для работы в сильно корродирующих средах. [c.533]

    Как и язвенная коррозия, коррозионное растрескивание под напряжением происходит преимущественно на пассивированных металлах в пределах области критических потенциалов. На уровень предельных потенциалов кроме специфических свойств материалов и сред оказывают влияние также вид и величина механических нагрузок. Съем металла (потеря массы) при коррозионном растрескивании под напряжением может быть чрезвычайно малым или даже равным нулю. Разрушение может развиваться вдоль границ зерен (межкристаллитно) или через зерна (транскристаллитно). [c.71]

    Учитывая, что поле напряжений, создаваемое дислокацией, распространяется в границах кристалла, специальные условия для активного проявления хемомеханического эффекта возникают при коррозии под напряжением в вершине трещины, где дальнейшее ее распространение определяется свойствами одного кристалла (транскристаллитное разрушение) или двух пограничных кри-I Сталлов (межкристаллитное разрушение). Тогда хемомеханический эффект, способствуя повышению химического потенциала поверхностных атомов (выход дислокаций), стимулирует механохимический эффект, который в свою очередь способствует выходу дисло-[ каций. Таким образом, можно сделать вывод о возможности авто-I каталитического механизма химико-механического разрушения в вершине трещины. Действительно, в работе [22 ] наблюдалось значительное увеличение скорости роста коррозионно-механической трещины во времени. [c.146]

    Коррозионное растрескивание под напряжением медных материалов вызывается растягивающими напряжениями - обычно остаточными напряжени51ми после холодной обработки - в сочетании с действием коррозионной среды, которая содержит аммиак и влагу, ртуть или родственные им вещества. Примерами таких сред являются паяльные флюсы, содержащие аммоний моча, атмосфера животноводческих помещений и даже открытые атмосферы (рис. 120). Поскольку опасность растрескивания наиболее велика в сезоны высокой влажности, явление иногда называют сезонным растрескиванием . Способностью вызывать коррозию медных сплавов под напряжением обладают и другие вещества, например нитриты. Трещины могут быть транскристаллитными или межкристаллитными в зависимости от pH среды и от величины напряжения. [c.137]

    Механические воздействия на металл (внешние и внутренние напряжения, вибрация) ускоряют коррозионнный процесс в таких случаях наблюдаемое разрушение конструкций называют коррозией под напряжением (коррозионное растрескивание) и коррозионной усталостью. Разрушение металлов может протекать по границам кристаллитов или в их толще. В последнем случае коррозия называется транскристаллитной. [c.10]

    Коррозия под напряжением характерна для латуней, и, чем выше содержание в них цинка, тем яснее она выражена. Двухфазные а + Р- или р + усплавы подвергаются коррозионному растрескиванию под действием влажного воздуха. Коррозионное растрескивание а-латуней вызывают аммиачные растворы или воздух, содержащий аммиак. Вредное влияние оказывают цаже незначительные примеси аммиака микробиологического происхождения. Коррозионное растрескивание может быть вызвано и другими коррозионными агентами. Этот вид коррозии наблюдается и у нелегированной меди, содержащей 0,17оР, когда по границам зерен выделяется фосфид меди с низким пределом текучести. Остальные медные сплавы также чуствитель-ны к коррозии под напряжением, но в меньшей степени, чем латунь. Трещины в а-латуни распространяются по границам зерен, в то время как в р-латунях сначала появляется межкристаллитная коррозия, которая через определенное время переходит в транскристаллитную. [c.117]


Рис. 1.100. Транскристаллитное КР промышленной трубы из аустенитной стали 12Х18НЮТ после 100 ч испытания в насыщенном водяном паре над раствором, содержащим 30 г/л хлористого натрия, при 250 С и 4 МПа. Растягивающее напряжение на внешней поверхности трубы 300 Д1Па. На внешней поверхности трубы следы межкристаллитной коррозии по на-углероженному слою глубиной 50 мкм. Шлиф поперечный. Травление анодное в 10 %-ной Х200 а. 6 — Рис. 1.100. Транскристаллитное КР <a href="/info/1582718">промышленной трубы</a> из <a href="/info/677949">аустенитной стали</a> 12Х18НЮТ после 100 ч испытания в <a href="/info/501790">насыщенном водяном паре</a> над раствором, содержащим 30 г/л <a href="/info/32610">хлористого натрия</a>, при 250 С и 4 МПа. Растягивающее напряжение на <a href="/info/431433">внешней поверхности</a> трубы 300 Д1Па. На <a href="/info/431433">внешней поверхности</a> трубы следы <a href="/info/10625">межкристаллитной коррозии</a> по на-углероженному <a href="/info/328261">слою глубиной</a> 50 мкм. Шлиф поперечный. Травление анодное в 10 %-ной Х200 а. 6 —
    Растягивающие напряжения увеличивают скорость общей коррозии металла и часто ухудщают распределение коррозии по поверхности (чю более опасно), переводя ее из общей в местную, вызывая коррозионное растрескивание. Образование трещин происходит в плоскостях, нормальных к направлению растягивающих напряжений. Коррозионные трещины могут при этом распространяться не только межкристаллитно, но и транскристаллитно, то есть перерезая отдельные кристаллы. [c.62]

Рис. 2. Коррозия металлов, вызванная микроэлектрохимической гетерогенностью а — межкристаллитная коррозия б — транскристаллитная коррозия в — струк-турно-избиратольпап коррозия. Рис. 2. <a href="/info/4743">Коррозия металлов</a>, вызванная <a href="/info/1514149">микроэлектрохимической гетерогенностью</a> а — <a href="/info/10625">межкристаллитная коррозия</a> б — транскристаллитная коррозия в — <a href="/info/1769042">струк</a>-турно-избиратольпап коррозия.
    Весьма быстрое разъедание склонных к коррозионному растрескиванию нержавек щих сталей в условиях растягивающей пластической холодной деформации можно объяснить некоторыми осо бенностями микроструктуры гранецентрированной. кубической решетки аустенита. Для этих сплавов характерна весьма низкая энергия дефектов упаковки и очень большое число дислокаций на плоскостях сдаига. Исследования, проведенные с помощью элек тронного микроскопа, показали ]119], что специфические среды почти исключительно разъедают только такие большие скопления, и возможно, что этим объясняется связь между скоростью деформации и сК( остью растворения. Хотя причина неясна, но имеются некоторые доказательства, что микросегрегация возникает в зонах больших скоплений, и это делает либо сами нагромождения, либо примыкающие к ним области особенно активно корродирующими. Как склонные к коррозионному растрескиванию аустенитные нержавеющие стали, так и а-латуни относятся к сплавам с низкими энергиями дефектов упаковки и подвержены транскристаллитному растрескиванию. Другие медные сплавы в аммиачных растворах подвержены межкристаллитной коррозии, например сплавы Си— Р Си—-51 Си—А1, и хотя с ними было проведено мало фундаментальных исследований, можно предположить, что неспособность треп ин проникнуть в тело зерен связана с высокими энергиями де- [c.186]

    Я не могу также ответить на вопрос Ванклина относительно межкристаллитного или транскристаллитного характера коррозии при механических напряжениях в парах в зависимости от реагента соды или поташа. Я не могу предложить для этого никакого объяснения. [c.184]

    При межкристаллитиой коррозии, происходящей в теплообменных выпарных аппаратах, при высокой щелочности воды, а также при нагревании легированных сталей, до высоких температур (500—900 °С), разрушение идет по границам кристаллитов (зерен) металла (рис. 26, е). Если разрушения протекают не по границам, а но телу кристаллитов, то появляется транскристаллит-ная коррозия (рис. 26,ж). Иногда транскристаллитное разрушение сочетается с межкристаллитным. [c.127]

    В зависимости от характера разрушений, сопровождающих процесс электрохимической коррозии, различают сплошную коррозию, захватывающую всю поверхность металла, и местную, локализующуюся на определенных участках. Очаги разрушения в случае местной коррозии могут иметь вид пятен (пятнистая коррозия) или точек (питтинговая коррозия). Они могут захватывать зерна только одного из компонентов металлического сплава (избирательная коррозия), проходить через все зерна в виде узких трещин <транскристаллитная коррозия) или, наконец, сосредоточивается по границам зерен (интеркристаллитная коррозия). Скорость и характер электрохимической коррозии определяются прежде всего природой металла и окружающей его среды. Металлы в зависимости от скорости коррозии в данной среде разделяют на устойчивые и неустойчивые. На основе того, с какой скоростью данная среда разрушает металл, ее определяют как агрессивную или неагрессивную в коррозионном отношении. Для оценки коррозионной устойчивости металлов и агрессивности сред были предложены различные условные шкалы. Скорость коррозии выражают несколькими способами. Наиболее часто пользуются весовым и токовым показателями коррозии. Первый из них дает потерю веса в граммах или килограммах) за единицу времени (секунду, час, сутки, год), отнесенную к единице площади (квадратный сантиметр, квадратный метр) испытуемого образца. Во втором случае скорость коррозии выражается силой тока (в амперах или миллиамперах), приходящейся на единицу площади образца. [c.461]

    Коррозия под напряжением наблюдается у латуней, и тем чаще, чем выше содержание в них цинка. Двухфазные сплавы, состоящие из фаз а + р или р+у, подвержены этой коррозии уже под воздействием влажного воздуха [47]. У а-латуней растрескивание под напряжением возникает под воздействием аммиачных растворов или воздуха, содержащего аммиак. Вредное влияние оказывают даже незначительные примеси, появляющиеся в результате микробиологических процессов. Растрескивание под напряжением может быть вызвано воздействием также и других коррозионных агентов. Этот вид коррозии наблюдается также и у нелегированной меди, раскисленной фосфором (0,1% Р), вследствие того, что по границам зерен выпадает фосфид меди (с низким пределом текучести) [50]. Другие медные сплавы также чувствительны к коррозии под напряжением, хотя в значительно меньшей мере, чем латуни. Так, на алюминиевых бронзах трещины под напряжением возникают в растворе гартзальца (рис. 3.25, а), а на медноникелевом сплаве 90-10 — в аммиачных парах [13]. У а-латуни трещины идут вдоль границ зерен кристаллов. В р-латуни трещины возникают как межкристаллитные, а затем превращаются в транскристаллитные [54]. [c.260]

    После производственных испытаний образцов в условиях испарения и дистилляции ледяной уксусной кислоты при 120— 140 °С в средах испарителя и кипятильника наблюдается точечно-язвенная коррозия нержавеющих сталей [24]. Кроме того, в местах наклепа (маркировки) в стали 12Х18Н10Т после испытания в кипятильнике в течение 8400 ч наблюдались трещины транскристаллитного характера, а в зоне сварных швов стали 08X21Н6Т после испытания в испарителе в течение 4200 ч —межкристаллитная коррозия по вторичному аустениту (7 -фазе). В металле шва сварных соединений хромоникелевых [c.313]

    Щелочная коррозия — локальные электрохимические повреждения экранных труб и хрупкие повреждения (межкристаллитные трещины) в местах упаривания котловой воды (каустическая хрупкость). Указанное повреждение экранных труб имеет вид бороздок, металл которых лишен окис-1ЮГ0 железа и имеет серебристый цвет [17], развивается в наиболее теплонапряженных местах. Каустическая хрупкость возникает в барабанах и вальцовочных соединениях в результате упаривания воды при относительной концентрации едкого натра (к сумме концентраций всех минеральных солей) более 15—20%. Трещины —как транскристаллитного, так и межкристаллитного-характера. [c.469]


Смотреть страницы где упоминается термин Коррозия транскристаллитная: [c.15]    [c.281]    [c.380]    [c.506]    [c.12]    [c.112]    [c.62]    [c.336]    [c.360]    [c.634]    [c.635]    [c.850]    [c.202]    [c.202]    [c.161]    [c.285]    [c.57]    [c.518]    [c.229]    [c.12]   
Охрана труда, техника безопасности и пожарная профилактика на предприятиях химической промышленности (1976) -- [ c.127 ]




ПОИСК







© 2024 chem21.info Реклама на сайте