Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Превращение в кислород энтропия

    ИЗ которого следует, что стандартная энтальпия образования озона положительна и равна 142,5 кДж/моль. Кроме того, как показывают коэффициенты уравнения, в ходе этой реакции из трех молекул газа получаются две молекулы, т. е. энтропия системы уменьшается. В итоге, стандартное изменение энергии Гиббса в рассматриваемой реакции также положительно (163 кДж/моль). Таким образом, реакция превращения кислорода в озон самопро-изЕюльно протекать не может для ее осуществления необходима затрата энергии. Обратная же реакция — распад озона — протекает самопроизвольно, так как в ходе этого процесса энергия Гиббса системы уменьшается. Иначе говоря, озон — неустойчивое вещество. [c.378]


    СОСТОЯНИИ. Когда металл с повышением температуры претерпевает фазовое превращение, его энтропия повышается на величину, равную скрытой теплоте фазового перехода, деленной на абсолютную температуру, при которой происходит переход. Это повышение может быть связано с соответствующим увеличением беспорядочности системы при превращении кристаллического металла в менее упорядоченное жидкое или газообразное состояние. При температурах выше температуры плавления или температуры кипения металла в результате реакции происходит превращение жидкого или парообразного металла и газообразного кислорода в кристаллический окисел металла, которое сопровождается большим понижением энтропии. Поэтому температурный коэффициент в этих точках повышается, а вместе с ним и наклон линии на диаграмме. В результате термодинамическая устойчивость продукта при более высоких температурах понижается, и область существования окисла занимает на диаграмме больше места, чем она занимала бы, если бы металл не претерпевал фазового превращения. С другой стороны, окисел металла плавится или кипит это уменьшает понижение энтропии, сопровождающее реакцию, и наклон линии на диаграмме в координатах AG° — Т уменьшится, так что реакция станет более выгодной выше температуры илавления или кипения окисла. Этот эффект не наблюдается в системе Са — СаО, но хорошо иллюстрируется системой РЬ — РЬО. [c.337]

    Таким образом, различие между представителями животного и растительного мира состоит в том, что у организмов, имеющих хлорофилл, ассимиляция энергии и субстрата совершенно обособлена. Последний состоит главным образом из углерода, водорода, азота, фосфора и серы, которые на нашей планете находятся преимущественно в предельно окисленном состоянии и для синтеза растительной ткани должны быть предварительно восстановлены посредством адсорбированной хлорофиллом солнечной энергии. Гетеротрофные организмы, наоборот, не способны сами восстанавливать неорганические вещества и вынуждены потреблять растительную пищу, чтобы получить необходимые для построения своего организма вещества и энергию. Более того, отрицательная энтропия, воспринятая с высокоорганизованной растительной пищей, служит не только для выполнения механической, осмотической и электрической работы, соответственно табл. 10.1, но также для компенсации тепловых потерь, происходящих в процессе превращения одних форм энергии в другие ). Выражение обмен веществ , которое употребляется в связи с указанным процессом, у неспециалистов может создать впечатление, будто сущность жизненных процессов заключается в обмене материи между пищей и организмом. Но в действительности наш вес постоянен, и если считать, что все атомы и молекулы неразличимы, то это относится и к углероду, кислороду и азоту, составляющим продукты обмена веществ. В таком случае, почему обмен веществ Ряд лет содержание энергии считалось чуть ли не самоцелью пищевых продуктов и в меню указывалось, сколько калорий содержится в том или ином блюде, словно человек или животные могут вопреки второму закону термодинамики изотермически превращать тепло Кроме того, как справедливо отмечает Шредингер [8], [c.471]


    Однако надо иметь в виду, что для большинства окислительных процессов, протекающих с поглощением кислорода (т. е. тех химических превращений, которые играют основную роль в энергетическом балансе организма человека и животных), изменение энтропии (Д5) настолько мало, что [c.208]

    Итак, ПО тепловому эффекту или теплоте реакции, строго говоря, нельзя судить об общем количестве освобождающейся химической энергии. Однако, несмотря на несостоятельность общего принципа Бертело о наибольшей работе, тепловой эффект во многих случаях дает достаточно правильное представление об энергетической ценности некоторых реакций. Это относится к большинству окислительных процессов, если ойи связаны с поглощением кислорода. Известно, что именно эти окислительные процессы играют основную роль в энергетическом балансе и продуцировании энергии в организме. В этих условиях, как и в калориметрической бомбе, суммарная реакция идет в одном направлении до конца. Изменение энтропии при этих условиях настолько мало, что им можно пренебречь. Отсюда, свободная энергия процесса почти не отличается от теплоты реакции, и, следовательно, тепловой эффект может служить мерой данного химического превращения. [c.32]

    При температурах ниже собственной температуры плавления смазочные пленки также способны претерпевать физические и химические изменения, что может отразиться на их смазочной способности. Возможны фазовые превращения пленок, о которых можно составить представление по величине тепловых эффектов этих превращений [96] и по изменению термодинамических характеристик. По изменению теплоты плавления, энтальпии, свободной энергии и энтропии, из которых три последних величины являются функциями состояния системы и имеют размерность энергии, можно судить о направлении химических реакций и о предельных значениях температуры и давления, при которых на поверхности металла существует смазочная пленка. Равновесному, т. е., устойчивому, состоянию системы соответствуют минимальные значения энтальпии и свободной энергии. Термодинамические характеристики некоторых чистых металлов и их соединений с кислородом, галогенами, серой, образование которых наиболее вероятно при резании металлов с применением смазочных материалов, даны в табл. 1 (см. стр. 51). Металлы и соединения, характеризующиеся высокой прочностью и высокой температурой плавления,, имеют относительно невысокие величины энтропии и высокие значения теплот плавления. [c.65]

    Алмазоподобные соединения. Адамантан, или трицикло[3,3,1,1 ] декан, молекулярная структура которого показана на рис. 37, представляет простейший насыщенный полициклический углеводород (СюН ) с атомами углерода, расположенными в виде сетки, напоминающей так называемую характерную ячейку решетки алмаза. Более того, адамантан является прототипом большого семейства алмазоподобных соединений со сходной молекулярной структурой, получающихся при замещении некоторых атомов углерода, образующих пространственную сетку, другими подходящими атомами. Кремний, азот и фосфор могут замещать третичный или мостиковый атом углерода, а кислород и сера могут играть роль одной или более метиленовых групп адамантана. Теплоемкость адамантана в области от 5° до 350° К определили Чанг и Уэструм [ПО] результаты их исследования представлены на рис. 38. При 208,62° К наблюдался резкий переход с кажущейся теплоемкостью больше 4000 кал -град -моль , а энтропия перехода равна 3,87 кал-град- -моль . Из-за значительного предпереходного увеличения теплоемкости изотермическая энтропия перехода при полном превращении в пластическую кристаллическую фазу, по-видимому, минимальна. Новацкий [480] сообщил, что адамантан образует плотно упакованную гранецентрированную кубическую решетку пространственной группы Та —Р 43т с а = 9,43 А. В недавней неопубликованной работе Нордмана [478] показано, что предположение о произвольной ориентации молекул лучше согласуется с новыми данными рентгеноструктурного исследования монокристалла, чем структура, предложенная Новацким, которая, однако, почти так же хорошо согласуется с этими данными. Проведенное Мак-Коллом и Дугласом исследование спектра протонного магнитного резонанса [391] показало резкое уменьшение теплоемкости в другой точке, при 143° К, которое интерпретируется как вращательный переход с энергией активации около 5 ккал-моль . [c.88]

    Как видно, для и W2, а возможно и для з, парциальная молярная энтальпия растворения кислорода с увеличением концентрации дефектов снижается. (По данным [50], зависимость будет противоположной). Это можно объяснить [56] тем, что растворение одного атома кислорода в закиси железа, вызывая образование катионной вакансии и двух ионов Ре +, является эндотермическим процессом. Уменьшение энтропии от —18,88 до —22,60 э. е. для вюстита одного валового состава (например, Рео,90бО см. табл. V. 5), но относящегося к разным фазовым областям (Т ь W2, й з), также приводит к выводу, что упорядочение дефектов увеличивается от 1 1 к № 2 и з. Подобная структурная информация, полученная из термодинамических измерений, требует непосредственного экспериментального доказательства. При этом фазовые превращения в вюститной области должны обязательно исследоваться Ьысокотемпературньщи структурными методами. Изучение же различных физико-химических свойств вюстита в зависимости от количества дефектов, выполненное на закаленных образцах, хотя и дает некоторое представление о влиянии дефектов на структуру и свойства, но все же менее ценно, чем высокотемпературные измерения, [c.112]



Смотреть страницы где упоминается термин Превращение в кислород энтропия: [c.455]    [c.365]    [c.365]    [c.374]    [c.378]    [c.211]    [c.211]    [c.222]   
Лекции по общему курсу химии ( том 1 ) (1962) -- [ c.262 ]




ПОИСК







© 2025 chem21.info Реклама на сайте