Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изотермический энтропии

    Изменение энтропии при изотермическом расширении п моль идеального газа можно определить [c.66]

    Принципиальная схема детандерного расширения представлена на рис. 41. Детандерное расширение характеризуется постоянством энтропии процесса. Газ засасывается компрессором К при давлении pi и температуре Ti и изотермически сжимается до давления р2 (линия 1—2). Сжатый газ расширяется в детандере Д-Р до первоначального давления рь Теоретически расширение в детандере происходит при постоянной энтропии (линия 2—3) и газ должен охладиться при этом до температуры Тг. При этом работа, совершаемая 1 кг газа в детандере, равна /i2—h-л. В действительности процесс в детандере отклоняется от адиабатического и расширение происходит по политропе (линия 2—< ). Энтальпия газа после расширения будет при этом h i, и работа, затрачиваемая в детандере, составит /дет = /1г— з-Отношение действительной работы к теоретической называется коэффициентом полезного действия детандера [c.124]


    Энтропия изотермического процесса, в котором вследствие флуктуаций изменяется относительное расположение молекул в элементарной ячейке макротела, равна  [c.34]

    Термодинамические параметры реакций определяются термодинамическими свойствами веществ, участвующих в реакции. Важнейшими из этих свойств являются внутренняя энергия, энтальпия, энтропия, теплоемкость, энергия Гиббса (изобарно-изотермический потенциал), энергия Гельмгольца (изохорно-изотермический потенциал). Как показывает статистическая термодинамика, каждая из термодинамических функций отражает в совокупности влияние всех особенностей состава, внутреннего строения и условий существования веществ. Использование термодинамических величин для характеристики химических свойств веществ и параметров химических реакций дает возможность количественно отражать влияние этих факторов. Вместо того чтобы определять, как то или иное изменение в строении молекул (характер связи между атомами, расстояние между ними и др.) влияет на положение равновесия в данной реакции (что большей частью и недостижимо), мы, пользуясь термодинамическим методом, оперируем такими функциями, которые дают возможность отразить это влияние суммарно и в более доступной форме. [c.14]

    Ур. (VII, 51) и (VII, 52) выражают зависимость энтропии одного моля идеального газа от его объема и давления при постоянной температуре. Они применяются обычно для определения изменения энтропии газа при изотермическом расширении или сжатии его. В этом случае постоянные ks и ks исключаются и [c.231]

    Смешаны 2-10 м гелия и 2-10 м аргона при 300 К и 1,01 X X 10 Па после изотермического смешения полученная газовая смесь нагрета до 600 К при постоянном объеме. Вычислите общее возрастание Энтропии, учитывая, что Су 12,6 Дж/(моль-К) и не зависит от температуры. [c.89]

    В середине XIX века Клаузиус на основе второго закона термодинамики показал, что существует такая величина (такая термодинамическая функция), которая является функцией состояния и изменение которой для обратимого изотермического перехода теплоты равно приведенной теплоте процесса. Эта величина получила название энтропии и обозначается буквой 5. Согласно предыдущему, для обратимого изотермического процесса перехода теплоты [c.215]

    Наконец, энтальпия и энтропия веществ и их изменение в результате реакции являются основными исходными величинами для вычисления энергии Гиббса и ее изменения в результате изотермической реакции  [c.21]


    На таких диаграммах можно легко проследить ход тех изменений, которым подвергается вещество (испарение, конденсация, сжатие, расширение, охлаждение, изменения адиабатические, изотермические, изоэнтальпные и другие). Для любой точки линии изменения можно быстро найти на диаграмме параметры, характеризующие состояние вещества (энтропию, энтальпию, давление, объем, температуру). В работе, связанной с развитием технологического метода, когда обязателен, например, выбор оптимального варианта процесса, проходящего при рассмотренных нами изменениях системы, энтропийные диаграммы незаменимы. Кроме того, следует помнить, что, особенно в областях низких температур и высоких давлений, поведение реальных газов резко отличается от поведения идеального газа, и расчеты по рассмотренным выше уравнениям требуют внесения поправок, трудно поддающихся вычислению, а иногда и не очень точных. Проведение расчетов с использованием энтропийных диаграмм, составленных по экспериментальным данным, обеспечивает получение значительно более точных результатов в короткое время. [c.142]

    Максимальная работа обратимого изотермического процесса определяется только начальным и конечным состояниями системы и не зависит от пути превращения. Поэтому, так же как и другие обладающие этим свойством термодинамические величины, характеризующие состояние (например, изменение внутренней энергии или энтропии), ее можно представить в виде разности [c.88]

    Последнее уравнение трактует минимальную работу полного разделения как разность изобарно-изотермических потенциалов смеси и продуктов разделения. Эта величина отрицательна,что соответствует затратам работы извне. Уравнения (7.7) —(7.9) для практических расчетов целесообразно преобразовать, используя известные соотношения для изменения энтропии в изотермическом процессе и уравнения для химического потенциала (2.2) и (3.2). Тогда получим для смеси идеальных газов [c.232]

    Если же по пути от То до Т вещество при температуре 7п переходит из одной кристаллической модификации в другую, то надо учесть возрастание энтропии при этом переходе. При обратимом изотермическом процессе изменение [c.279]

    К важнейшим величинам, характеризующим хи> мические системы, относятся внутренняя энергия [У, энтальпия Н, энтропия 5 и энергия Гиббса (изобар-но-изотермический потенциал) О. Все эти величины представляют собой функции состояния, т. е. зависят только от состояния системы, но не от способа, которым это состояние достигнуто. [c.73]

    Изобарно-изотермический потенциал пластовой жидкости (даже при условии какого-либо одного значения Т или р) ма ло изучен как у нас, так и за рубежом [10, 18, 29, 45, 59]. С привлечением значений энтальпии и энтропии пластовой нефти при широком наборе величин Тир представляется возможность, во-первых, раскрыть числовые номиналы величин (АО) Т, р и, во-вторых, проследить за связью между величинами АО, Тир при различных термогидравлических обстоятельствах. [c.85]

    Если процесс проводится обратимо и при постоянной те.мпе-ратуре (изотермически), то изменение энтропии связано с погло- [c.198]

    Сопоставим для 1 моль диоксида углерода изменение энтропии при изотермическом (100 °С) сжатии от 0,1 до 100 МПа, предполагая состояние идеального газа, состояние реального газа и пользуясь коэффициентом сжимаемости (см. рис. I). [c.57]

    По исправленным данным э. д. с. вычислить изменение изобарно-изотермического потенциала, энтальпии и энтропии реакции. [c.318]

    Для определения термодинамических параметров алкенов разумнее использовать ограниченное число справочных данных, на основе которых по определенным правилам можно было бы рассчитать характеристики алкена заданного строения. С этой целью нами на основе известных термодинамических величин [I—3] определены поправки — изменения теплоемкости ср, энтропии S , теплоты образования Aff и изобарно-изотермического потенциала (энергии Гиббса) при образовании AG для следующих изменений в молекуле олефина  [c.7]

    При расчете по данным табл. 1—3 расхождения не превышают для теплоемкости 0,6 Дж/(моль-К) (т. е. меньше 0,5%), для энтропии 2 Дж/(моль-К) (меньше 0,3%), для теплоты образования 0,4 кДж/моль (меньше 0,8%), для изменения изобарно-изотермического потенциала 1,6 кДж/моль (меньше 0,5%). Хорошее совпадение справочных данных и величин, рассчитанных по описанному методу, обосновывает целесообразность его использования для практических расчетов. [c.10]

    Поправки при указанных выше переходах определены путем усреднения изменений для 5—15 одинаковых переходов, осуществляемых для алкенов с разной молекулярной массой. Пользуясь этими поправками и термодинамическими параметрами бутена-1 можно определить теплоемкость, энтропию, теплоту образования и изменение изобарно-изотермического потенциала при образовании для алкена с заданным строением в широком интервале температур (300—1000 К). Подчеркнем, что характеристики бутена-1 и поправки, приводимые ниже в таблицах, даны для газообразного состояния при 0,098 МПа. [c.387]

    Мы сочли необходимым ввести в курс понятия об энтропии S и ее изменении AS и об изменении изобарно-изотермического потенциала ДО, так как твердо уверены в том, что в настоящее время нельзя излагать химию в вузе, опираясь только на понятие о тепловых эффектах ДЯ. С другой стороны, мы отдавали себе отчет в [c.4]


    Изменение энтропии при изотермическом расширении (сжатии) [c.232]

    X, Т, р. К), Sm -X, Т, р, К) — зависимости изотермических отклонений энтальпии и энтропии реальной смеси от идеальногазового состояния, полученные на основе уравнения состояния [107]. [c.417]

    Изменение энтропии всецело определяется начальным и конечным состояниями газа и не зависит от того, протекал ли процесс обратимо или необратимо, происходил ли он с поглощением или выделением теплоты или при = 0. Однако только при обратимом изотермическом проведении процесса AS = q/T (п, следовательно, q = RT n = Лм . [c.232]

    Для реакций, в которых участвуют только кристаллические вещества, пользуясь тепловой теоремой (см. 98), можно, и не располагая значением константы равновесия при какой-нибудь температуре, определить постоянную интегрирования уравнения (VI, 27), если известны теплоемкости веществ, участвующих в реакции, для всего температурного интервала от То до интересующей нас температуры. Наряду с этим, если известны абсолютные энтропии веществ, участвующих в реакции, легко определить и изменение энтропии при реакции. Отсюда, зная тепловой эффект реакции, можно рассчитать изменение соответствующего изотермического потенциала (АО или ДР) и константу равиовесия, не прибегая к измерениям самого равновесия .  [c.288]

    Самопроизвольно, т. е. без затраты работы извне, система может переходить только из менее устойчивого состояния в более устойчивое. Из рассмотренного следует, что в химических процессах одно-зремепно действуют две тенденции стремление частиц объединяться за счет прочных связей в более сложные, что уменьшает э н- а л ь п и ю системы, и стремление частиц разъединиться, что у в е-,1ичивает энтропию. Иными словами, проявляется действие двух прямо противоположных факторов — энтальпийного (ДЯ) и энтропийного (TAS). Суммарный эффект Э1их двух противоположных тенденций в процессах, протекаюш их при постоянных Т и р, отражает изменение энергии Гиббса G (или изобарно-изотермического потенциала)  [c.172]

    Вычислить изменение энтропии 1 кг льда при изотермическом переходе его в пар при 105 С перпоначальная температура льда —30° С. [c.212]

    Представим себе, что реальный газ (НС1) изотермически расширяется от давления до бесконечно малого давления Pj = Р. при котором он приобретает свойства идеального газа. Изменение энтропии AS, при этом в соответствии с (71.6) составит [c.235]

    Книга содержит сведения о термодинамических свойствах фильтрационного потока нефти, газа и нефтегазовых систем (бинарных смесей). На диаграммах и в таблицах приведены важнейшие термодинамические функции пластовой жидкости (теплоемкости, энтальпии и энтропии, изобарно-изотермического потенциЛга, константы равновесия, плотности и др.) в процессе фильтрации в диапазоне давлений от 30 до 300 кГ см и при температурах до 80° С.,  [c.2]

    Найдите изменение энтропии при изотермическом Т = 353,2 К) сжатии паров бензола от = 4,0532-Ю Па до Р = 1,0133-10 Па с последующими конденсацией и охлаждением жидкого бензола до Т = 333,2 К, если АЯ ар = 30877,92 Дж/моль и (а)с.н. = = 1,80 Дж/(г-К). Пары бензола считать идеальным газом. [c.90]

    Алмазоподобные соединения. Адамантан, или трицикло[3,3,1,1 ] декан, молекулярная структура которого показана на рис. 37, представляет простейший насыщенный полициклический углеводород (СюН ) с атомами углерода, расположенными в виде сетки, напоминающей так называемую характерную ячейку решетки алмаза. Более того, адамантан является прототипом большого семейства алмазоподобных соединений со сходной молекулярной структурой, получающихся при замещении некоторых атомов углерода, образующих пространственную сетку, другими подходящими атомами. Кремний, азот и фосфор могут замещать третичный или мостиковый атом углерода, а кислород и сера могут играть роль одной или более метиленовых групп адамантана. Теплоемкость адамантана в области от 5° до 350° К определили Чанг и Уэструм [ПО] результаты их исследования представлены на рис. 38. При 208,62° К наблюдался резкий переход с кажущейся теплоемкостью больше 4000 кал -град -моль , а энтропия перехода равна 3,87 кал-град- -моль . Из-за значительного предпереходного увеличения теплоемкости изотермическая энтропия перехода при полном превращении в пластическую кристаллическую фазу, по-видимому, минимальна. Новацкий [480] сообщил, что адамантан образует плотно упакованную гранецентрированную кубическую решетку пространственной группы Та —Р 43т с а = 9,43 А. В недавней неопубликованной работе Нордмана [478] показано, что предположение о произвольной ориентации молекул лучше согласуется с новыми данными рентгеноструктурного исследования монокристалла, чем структура, предложенная Новацким, которая, однако, почти так же хорошо согласуется с этими данными. Проведенное Мак-Коллом и Дугласом исследование спектра протонного магнитного резонанса [391] показало резкое уменьшение теплоемкости в другой точке, при 143° К, которое интерпретируется как вращательный переход с энергией активации около 5 ккал-моль . [c.88]

    Рассмотрим систему, состоящую из химических веществ Aj, между которыми могут происходить реакции типа oi.jAj = 0. Пусть температура и давление поддерживаются постоянными. Состояние системы будет самопроизвольно изменяться в сторону общего увеличения энтропии до тех пор, пока не будет достигнуто равновесие и дальнейший прирост энтропии станет невозможным. Если при бесконечно малом изотермическом изменении состояния системы должно быть поглощено количество тепла dq, а прирост энтропии в системе равен dS, то общее изменение энтропии системы и термостата составляет dS — dqlT. Однако [c.47]

    Очень редко приводят значения важнейших термодинамических параметров (энтальпия и энтропия, теплоемкость, изобарно-изотермический потенциал и койстанты равновесия и др.) в условиях пористой среды пласта и в процессе фильтрации по нему нефтегазовых потоков (бинарных сдстем) при различных давлениях и температурах. Исключением являются работы (10, 29, 32, 47, 81), в которых рассмотрены некоторые термодинамические свойства различных углеводородных систем. [c.5]

    При смешении двух газов в количестве л, и пг молей при постоянных тем иературе Т и общем давлении р каждый газ изменяет свой объем от первона чального до объема смеси, равного сумме исходных объемов газа. Изменение эигропин при смешении является суммой изменений энтропии каждого газ прн его изотермическом расширении. В соответствии с уравнением (П1, 19) это изменение равно  [c.94]

    Обобщающий график для изотермических изменений энтропии, подобный графику рис. 66, может быть представлен на основании идеализированного сосвояния (рис. 67). При расчетах изменения энтропии с помощью этих графиков рекомендуется пользоваться теми же ступенями процесса, которые использовались для расчета энтальпии. Изменение [c.121]

    Пример. Определить изменение энтропии одного моля идеалыюго газа при изотермическом уменьшении объема его в 10 раз. [c.232]

    Смешаны 2 10 м гелия и 2 10 м аргона при 300 К и 1,01 10 Па после изотермического смешения полученная газовая смеоз нагрета до 600 К при постоянном объеме. Вычислите, общее возрастание энтропии, учитывая, что v 12,6 Дж/(моль К) и не зави ит от температуры. [c.86]

    При физической адсорбции энтропия адсорбции многих газов лежит в пределах 80—]00Дж/(моль К). Если принять предельное значение адсорбции Гоо= = 10 моль-см и толщину адсорбционного слоя 5-10 см, то концентрация газа в адсорбционном слое будет равна 10 /5 10 1 = 0,02 моль/см , или 20 моль/л. Если рассматривать газ как идеальный, то уменьшение энтропии газа в результате адсорбции при нормальном давлении газа над адсорбентом будет равно / 1п20 22,4 и 54 Дж/(моль К). Если учесть двухмерное состояние адсорбированного газа, то изменение энтропии будет еще больше. Следовательно, при взаимодействии субстрата с поверхностью катализатора только за счет физической адсорбции изменение энтропии газа Д 5° будет равно 80 Дж/(моль К)- Это равносильно тому, что энергия Гиббса адсорбированного газа, если рассматривать его как идеальный, возрастает примерно на 24 Дж/(моль К), так как при изотермическом сжатии идеального газа ДО + 4- /"Д 5 =0 (см. 71). Тепловой эффект физической адсорбции изменяется в широких пределах. Термодинамические характеристики процесса адсорбции некоторых веществ на саже приведены ниже. [c.641]


Смотреть страницы где упоминается термин Изотермический энтропии: [c.14]    [c.31]    [c.101]    [c.216]    [c.221]    [c.226]    [c.228]    [c.233]    [c.237]    [c.86]   
Краткий курс физической химии Изд5 (1978) -- [ c.212 ]




ПОИСК





Смотрите так же термины и статьи:

Изотермические изменение энтропии

Состояние изотермическое возникновение энтропии, минимальное значение

Термодинамические величины. Энтропия и изобарно-изотермический потенциал

Энтропия в изотермических процессах

Энтропия, изменения в изотермических процессах



© 2024 chem21.info Реклама на сайте