Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембраны заряженные

    Относительная диэлектрическая проницаемость растворов 80,1, вязкость 1-10" Па-с. Определите знак заряда поверхности мембраны, если растворы под действием тока перемещаются к катоду. [c.109]

    На рис. 4 приведена схема электродиализатора. При электродиализе мембраны несут электрический заряд, и может произойти смена ионного состава коллоидной дисперсии, соответственно изменяется и ее pH. Эти изменения обусловлены тем, что электрически заряженные мембраны неодинаково проницаемы для катионов и анионов. Для устранения этого эффекта мембраны, применяемые в электродиализе, могут обрабатываться различными веществами, уменьшающими их собственный заряд. Избирательные свой-сва мембран в некоторых случаях используют и для селективной очистки или для еще большего ускорения электродиализа, когда применяют две мембраны — анодную и катодную, изготовленные из материалов с различными зарядами. [c.16]


    Второй метод определения чисел переноса через мембраны основывается на использовании диффузионного потенциала. Диффузионный потенциал возникает, как известно, при соприкосновении двух растворов электролитов различной концентрации, вследствие разной скорости диффузии отдельных ионов разного знака заряда. При диффузии ионов электролита в сторону более разбавленного раствора, если катион обладает большей подвижностью по сравнению с анионом, то более разбавленный раствор приобретает положительный заряд. При большей относительной подвижности аниона более разбавленный раствор получает отрицательный заряд. Величина диффузионного потенциала зависит от соотношения подвижностей катиона и аниона. По Нернсту величина диффузионного потенциала и связана с подвижностью катиона и и аниона V следующим соотношением [c.210]

    С увеличением разности чисел переноса ионов в анодной и катодной мембранах возрастает скорость изменения концентрации электролита в средней камере. Можно повысить скорость электродиализа, применяя мембраны одного знака заряда, но разной электрохимической активности. При этом, если мембраны приготовлены из одного и того же материала и имеют отрицательный заряд поверхности, то мембрану с большим средним радиусом пор ставят на анод. В случае двух положительно заряженных мембран анодная мембрана должна иметь меньший радиус пор по сравнению с катодной. Наиболее эффективно процесс электродиализа будет идти с идеально электрохимически активными мембранами разного знака заряДа. В этом случае разность чисел переноса ионов электролита в анодной и катодной мембранах достигает максимальной вели--чины, т. е.. единицы. [c.227]

    НО увеличивается в результате введения в поливочный раствор солей, например [49] добавки Mg( 104)2 в раствор ацетата целлюлозы в ацетоне. Установлено, что основная роль добавляемых в поливочные растворы солей заключается в увеличении набухаемости мембраны и, следовательно, содержания в ней воды. Основную функцию при этом выполняют катионы, находящиеся в гидратной форме и стремящиеся соединиться со свободными гидроксильными группами в полимере [56]. Роль анионов вторична они могут уменьшить плотность зарядов катионов путем образования ионных пар в растворе. [c.68]

    Твердые мембраны. Твердая мембрана состоит из активного вещества с фиксированными. ионогенными группами, содержащими ионообменные центры (узлы), в которых расположены ионы, называемые противоионами и участвующие в переносе заряда (рис. 6), Если активное вещество - кристаллическое или стек- [c.43]


    Пример проявления свойств М-элемента в ФХС представлен на рис. 1.6. Электрохимическая система, изображенная на рис. 1.6, представляет электролитическую ванну с двумя электродами и двумя противоположно заряженными мембранами [17]. При прохождении электрического тока э = / под действием напряжения щ = е мембраны препятствуют движению ионов с зарядом того же знака, поэтому концентрация электролита в межмембранной области возрастает или убывает в зависимости от направления тока. Так как электрическая проводимость падает с уменьшением концентрации ионов, то внутреннее сопротивление зависит от общего количества прошедшего через систему тока. Концентрация (а следовательно, и сопротивление) будет непрерывно изме- [c.34]

    Сопоставляя электрическую емкость мембраны и выделение энергии в процессе дыхании, Митчел заключил мембрана зарядится так быстро, что кислотность снаружи митохондрий не успеет измениться сколько-нибудь заметным образом.  [c.60]

    Первые слагаемые в (9.16) и (9.17) представляют собой обычные классические составляющие электрического поля. Отметим, что в случае диполя это слагаемое спадает существенно быстрее, чем в случае заряда. Вторые слагаемые обязаны своим происхождением пространственной дисперсии е( ). Существенно, что теперь оба эти члена спадают одинаковым образом, причем в (9.16) нелокальный член не исчезает (в отличие от классического слагаемого) при усреднении Е г) по всем ориентациям п. Именно эта особенность электрических полей в нелокальной электростатике приводит к существованию сильного электрического поля вблизи нейтральной липидной мембраны [429,. 438]. [c.157]

    Выбор той или иной добавки обусловлен природой растворенных веществ, их концентрацией, необходимой селективностью и рядом других факторов. Следует иметь в виду, что мембраны, образованные добавками, несущими заряд, могут подвергаться неблагоприятному воздействию поливалентных противоионов. Кроме того, с повышением концентрации растворенных веществ их селективность быстро уменьшается. Нейтральные мембраны не имеют таких недостатков, однако характеристики разделения обычно хуже, чем у заряженных мембран. [c.88]

    Мембрана на основе сульфида серебра обладает ионной проводимостью с малым сопротивлением. Перенос заряда осуществляется ионами серебра. Высокая селективность к ионам Ад и 8 , обеспечиваемая малой величиной ПРд .о, и заметная [c.53]

    При установлении мембранного равновесия ионные произведения противоионов по обе стороны мембраны должны быть одинаковыми, т. е. константа ионообменного равновесия должна быть равна единице. Термодинамическим условием равновесия должно быть равенство произведений концентраций катионов и анионов по обе стороны мембраны. Однако вследствие неспособности фиксированного иона ионита проникать в раствор, концентрация ионов, соответствующих по знаку заряда фиксированным ионам, будет разной, причем меньшей в ионите, чем в. растворе. Поэтому поверхность зерен ионита можно рассматривать как мембрану, не проницаемую для фиксированных ионов и проницаемую для обменивающихся ионов. [c.105]

    Аналогичное положение имеет место на фазовой границе мембрана — раствор мембрана заряжается относительно раствора, причем знак заряда соответствует знаку связанных ионов. Разность потенциалов равна [c.321]

    Для полупроницаемой мембраны уравнение (482) является условием равновесия для ионов, обменивающихся с мембраной. Ионы того же знака, что и противоионы, накапливаются в мембране, так как она имеет небольшой избыточный заряд того же знака, что и связанные ионы, и принимает соответствующий потенциал относительно раствора. Если противоионы являются катионами (мембрана заряжена отрицательно), то [c.321]

    Стеклянный электрод отличается от уже рассмотренных электродов тем, что в соответствующей ему электродной реакции не участвуют электроны. Наружная поверхность стеклянной мембраны служит источником водородных ионов и обменивается ими с раствором подобно водородному электроду. Иными словами, электродная реакция сводится здесь к обмену ионами водорода между двумя фазами — раствором и стеклом Н+=Н+ст. Поскольку заряд водородного иона соответствует элементарному положительному коли- [c.242]

    Скачок потенциала на внутренней поверхности стеклянной мембраны имеет постоянную величину, а на внешней меняется в зависимости от активности ионов Н+. Сама стеклянная мембрана способна проводить ток. Переносчиками зарядов являются катионы. [c.241]

    В-третьих, может наблюдаться электроосмос через мембраны. Направление движения жидкости при электроосмосе зависит от знака заряда мембран и расположения их по отношению к электродам в электродиализаторе. Поэтому электроосмотический перенос жидкости может быть направлен как из средней камеры в электродные, так и наоборот. В результате может значительно изменяться объем раствора в средней камере. Если жидкость движется из электродных камер, где в процессе электродиализа образуются кислота и щелочь, в среднюю камеру, то вследствие этого там также может произойти изменение состава электролита. [c.224]


    При проведении этих опытов мы встретились с тем обстоятельством, что наполнение пор мембран тем или иным раствором определялось направлением и величиной электроосмотического переноса. В зависимости от знака заряда мембраны, состава и концентрации окружающего раствора величина и направление электроосмотического переноса имели определенное значение. Кроме того, при постановке опытов следовало учесть диффузию электролита через мембраны. При учете диффузии было сделано предположение, что нужно принимать в расчет диффузию из электродных камер только в том случае, если ее направление совпадает с направлением электроосмотического переноса. В том же случае, когда диффузия вследствие разницы концентраций [c.179]

    Еще одним свойством мембран является их способность заряжаться при контакте с жидкостями. Заряд мембраны возникает теми же путями, что и заряд любой твердой поверхности либо в результате диссоциации вещества мембраны, либо за счет адсорб- [c.422]

    Первоначально для электродиализа использовали те же мембраны, что и для диализа, т. е. коллодий, целлофан и т. д. Однако ряд факторов осложняет очистку электродиализом. Один из них — собственный заряд мембраны. Чаще всего целлюлозные мембраны приобретают отрицательный заряд, и катионы легче проходят сквозь них, чем анионы. По этой причине иногда наблюдается снижение водородного показателя среды при очистке. Другой фактор — электрическая проводимость мембран. Мембраны из целлофана и коллодия отличаются низкой электрической проводимостью, вследствие чего повышается общее электрическое сопротивление в аппарате и уменьшается скорость движения ионов. Для ускорения очистки мембраны часто изготовляют из ионообменных смол, электрическое сопротивление которых в воде значительно ниже такового пленок из коллодия и целлофана. [c.26]

    Поверхностный потенциал обусловлен фиксированными зарядами мембраны, образованными диссоциируемыми группами в полярных головках липидов, а также ионизируемыми группами аминокислот, входящих в состав структурных белков мембраны. Фиксированные на поверхности мембраны заряды и притягивающиеся к ним противоионы образуют двойной электрический слой (см. 5 гл. ХУП1). [c.111]

    Иотюселективпые электроды отличаются от всех рассмотренных ранее тем, что у них обе граничащие фазы — мембрана и раствор — облпляют ионной проводимостью, и поэтому на их границе не про-исхичит собственно электрохимическая реакция с переиосом электронов. Процесс сводится здесь к обмену ионами между мембраной и раствором. Межфазную границу пересекают только ионы, заряд [c.172]

    Для изготовления ядерных мембран Нуклеопоры используют [62] осколки деления, образующиеся ири облучении тонкой урановой пластинки ( и) потоком нейтронов из атомного реактора. Эти осколки обладают большими зарядом и массой и весьма эффективно разрушают пластические материалы. Однако деление ядер урана происходит несимметрично наряду с группой тяжелых осколков, заряд и масса которых близки к заряду и массе ионов ксенона, образуется также пленка значительно более легких осколков с меньшей деструктивной способностью кроме того, каждая из этих групп имеет дисперсию по массе, заряду и величине кинетической энергии. Следствием этого является значительная дисиерсия размеров пор в мембранах. Мембраны, [c.56]

    Гомогенные мембранные электроды. Гомогенные кристаллические мембраны обладают высокой селективностью, что дост гается ограничением перемещения всех ионов в кристалле, кроме основного. Вакансии в кристаллах соответствуют лишь определенным размерам, форме и распределению заряда ионов, поэтому их заполнение возможно лишь определенными видами ионов. Как правило, инородные ионы не могут войти в кристалл. Теория функционирования кристаллических мембран относительно проста. Такие электроды обладают теоретической ионной функцией. Влияние посторонних ионов может быть связано с изоморфным замещением и с некоторыми химическими реакциями, происходящими на поверхности электрода. [c.53]

    Опыт показывает, что мембраны из целлюлозы и пергамента, а также керамические диафрагмы в растворах электролитов приобретают отрицательный заряд. Некоторые полупроницаемые перегородки, например из дубленой желатины, наоборот, приобретают в растворах электролитов положительный заряд. Экспериментально установлено, что при отрицательном заряде диафрагмы с уменьшением диаметра пор перенос электричества анионами уменьшается и в пределе становится равным нулю. В этих условиях электричество переносится только с помощью катионов. Если же диафрагма заряжена положительно, наблюдается обратное явление. Следует отметить, что при одном и том же диаметре капилляров изменение чисел переноса тем больше, чем выше электрокинетический потедшиал стенок капил-ляров. - + [c.257]

    Среди электрокинетических свойств капиллярных систем — мембран. и диафрагм существенную роль играет изменение чисел переноса ионов в порах мембраны по сравнению со свободным раствором. Рассмотрим сущность данного явления. Представим себе капилляр в продольном разрезе, наполненный раствором электролита с двойным электрическим слоем ионов на внутренней поверхности, при отрицательном заряде стенки (рис. 86). В объеме АБВГ, где ионы сохраняют подвижность при наложении электрического поля, концентрация катионов больше, чем [c.205]

    Однако число таких детально изученных систем до настоящего времени весьма невелико. Кроме того, для реальных пористых тел, использующихся как мембраны в практических целях (например, для электродиализа), эти примеры не имеют большого значения. Для получения мембран определенного знака заряда К. Мейер путем добавления к раствору ацетилцеллюлозы [СбН702(0С0СНз)з]ж различных веществ получил мембраны кислого, амфотерного и основного характера. Так, добавление к раствору ацетилцеллюлозы полиакриловой кислоты (СНг=СН СООН)ас приводило к тому, что полученные мембраны имели кислый характер, т. е. были отрицательно заряжены. Мембраны амфотерного характера получались путем добавления к раствору ацетилцеллюлозы продукта конденсации триэтанола- [c.153]

    В работе Вильбрандта проницаемость мембран из производных целлюлозы по отношению к различным ионам связывается с наличием тех или иных химических активных групп на поверхности капилляров мембраны. Вильбрандт полагает, что такими активными группами для нитроцеллюлозы являются группы ЫОг. Эти сильно полярные группы являются диполями, внешний конец которых отрицателен, что и подтверждается отрицательным зарядом коллодиевых мембран. Электрохимическое поведение различных мембран из производных целлюлозы определяется, по Вильбрандту, дипольными моментами отдельных активных [c.153]

    Вильбрандт обращает внимание на то, что группы, несущие отрицательный заряд, встречаются наиболее часто, и поэтому положительно заряженные мембраны менее распространены. [c.154]

    N( H3)2, заряд которых нейтрализован зарядом подвижных анионов. В водных растворах подвижные анионы могут замещаться (ОН на С1 или SOI и т, п.). Электростатическое отталкивание препятствует внедрению в анионобменную мембрану катионов. По тем же причинам в катионобменные мембраны, содержащие фиксированные [c.26]

    Растворы полиэлектролитов отличаются от растворов неионогенных высокомолекулярных веществ и своими осмотическими свойствами. Эта особенность была установлена Ф. Доннаном (1911), показавшим, что концентрации ионов по обе стороны полупроницаемой мембраны различаются. Для доказательства этого положения рассмотрим систему, )азделенную на две части полупроницаемой мембраной. 1усть в одной части содержатся макроионы и электролит в растворе, в другую часть макроионы не проникают. Возьмем принятые ранее обозначения заряда макроионов, их концентрации, концентрации анионов и катионов г, / а, пг , т . Концентрации ионов в части, содержащей макромолеку- [c.216]


Смотреть страницы где упоминается термин Мембраны заряженные: [c.139]    [c.178]    [c.225]    [c.161]    [c.57]    [c.219]    [c.203]    [c.321]    [c.317]    [c.206]    [c.225]    [c.225]    [c.225]    [c.153]    [c.170]    [c.176]    [c.132]    [c.164]    [c.423]   
Ионный обмен (1968) -- [ c.421 , c.451 ]




ПОИСК







© 2025 chem21.info Реклама на сайте