Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Мембранный электрод, селективный катионам

    Особое место в измерении pH растворов занимает стеклянный электрод, широко используемый в настоящее время благодаря ряду его преимуществ (большая селективность, неподверженность отравлению, отсутствие влияния сильных окислителей и восстановителей и пр.). Механизм возникновения потенциала на поверхности стеклянного электрода не является электрохимическим, он в принципе относится к мембранным ионоселективным электродам, которые в последние годы все чаще применяют для определения активности (концентрации) самых различных ионов (катионов и анионов) и привели к возникновению нового раздела прямой потенциометрии — ионометрии. [c.104]


    Для жидкостных мембранных электродов, селективных к ионам Zn +, предложена соль аниона [Zn(S N)4]2- с катионом бриллиантового зеленого, растворенная в о-дихлорбензоле [97]. Содержание иона Zn + с помощью этого электрода определяют в растворах цинка, содержащих 20-кратный избыток [c.52]

    Первоначально в качестве электродно-активных компонентов жидкостных мембранных электродов, селективных к однозарядным ионам, использовали макроциклические природные и синтетические нейтральные переносчики, образующие, как правило, комплексы с отношением лиганд — катион 1 1 (по крайней мере те из них, которые находят применение в ионометрии). Основным свойством этих соединений как переносчиков ионов является способность образовывать структуру с липофильной оболочкой и полярной внутренней поверхностью (полостью), как это наблюдается для структуры валиномицина, изображенной на рис. 7.4. Внутренняя полость ионофора должна иметь менее 12, а предпочтительно 5—8 координационных центров. Структура образующегося комплекса должна быть достаточно жесткой, что достигается за счет ее усиления внутримолекулярными водородными связями. Однако жесткость структуры не должна быть слишком большой, так как в противном случае ионный обмен будет происходить с недостаточной скоростью [153, 186]. [c.208]

    Мембранные электроды. Если между двумя растворами, содержащими разные катионы или различные концентрации одного катиона, поместить мембраны, проницаемые для катионов и непроницаемые для анионов, то в таких мембранах возникает потенциал. Были сделаны попытки использовать селективные мембранные электроды для измерения активностей ионов металлов, особенно металлов главных подгрупп 1-й и 2-й групп, металлические или амальгамные электроды которых разлагаются водой и нет возможности найти подходящую окислительно-восстановительную систему. Большое число таких электродов рассматривается в работах [85, 204]. Первые исследования проводились с коллодием или гидратированными цеолитами, но позднее начали изготовлять мембраны из синтетических ионообменных смол, содержащих карбоновые, фосфоно-вые [158] или сульфогруппы, либо из стеарата бария [86], окиси графита [58] и неорганических осадков в парафиновом воске [80]. Ионы щелочных металлов, также как и протоны, были изучены с помощью стеклянного мембранного электрода. Потенциал мембраны обычно измеряется косвенным путем с помощью элементов типа [c.165]


    Электрод для определения двухзарядных катионов. Электрод фирмы Орион (модель 93-32), селективный к двухзарядным катионам, представляет собой жидкостной мембранный электрод, предназначенный для определения жесткости воды. Используется в сочетании с соответствующим электродом сравнения. [c.160]

    Здесь следует отметить, что для твердых мембран названные требования находятся в противоречии и удовлетворить их трудно, поэтому большинство мембранных электродов имеют ограниченные области обратимости (низкую селективность). Например, ионы Са + и Mg + связываются поверхностными слоями стекла гораздо прочнее, чем однозарядные Ыа+ и К+, но при этом становятся практически неподвижными, и стеклянных электродов с удовлетворительной функцией двузарядных катионов получить не удается. Лишь для ионов Н+ высокая избирательность их поглощения стеклом не сопровождается потерей подвижности, причиной чего могут служить особые механизмы переноса протонов в твердых телах. В силу отмеченного обстоятельства стеклянные электроды с водородной функ- [c.548]

    Для потенциометрических измерений применяют мембранные индикаторные электроды. Они обладают высокой чувствительностью и селективностью к катионам и анионам. По материалу мембраны их можно разделить на четыре группы стеклянные электроды электроды с жидкими мембранами электроды с твердыми или осадочными мембранами электроды с газочувствительными мембранами. [c.106]

    Большие преимущества стеклянного электрода как средства удобного и быстрого определения протонной активности послужили стимулом для разработки других мембранных -электродов, проявляющих селективную чувствительность к присутствующим в среде катионам или анионам. Подобные электроды называются ионоселективными. [c.342]

    Кристаллический фторид лантана (ЬаРз) обладает высокой электрической проводимостью за счет чрезвычайной подвижности иона фтора в решетке кристалла. Так, из синтетического монокристалла фторида лантана с добавкой катиона европия(И) для повышения проводимости можно сделать отличный твердый мембранный электрод, чувствительный и селективный к иону фтора в интервале активностей от 10- до М. Во внутреннем отделении электрода, выпускаемого промышленностью, имеется раствор, содержащий смесь 0,1 Р раствора фторида [c.385]

    В книге рассматриваются вопросы применения и твердых ион-селективных электродов, чувствительных к неорганическим анионам (СР, Вг , Р и др.) и жидких мембранных систем, позволяющих создавать электроды, селективные к большинству неорганических катионов и анионов, а также к ряду органических соединений. Постепенное расширение номенклатуры и повышение качества ион-селективных электродов позволяют применять их для экспресс-анализа и в контрольно-измерительной аппаратуре, например, при производстве некоторых органических соединений и лекарственных препаратов. На их основе создаются также высокопроизводительные автоматизированные системы клинического и биохимического анализа. [c.5]

    Можно ожидать, что использование в качестве пластификаторов протонодонорных соединений обеспечит преимущественное сольватиро-вание отрицательно заряженных частиц. Это предположение подтверждают экспериментальные данные. Так, найлон-фенольная мембрана селективна преимущественно по отношению к анионам тетрафенилбората (особенно при малых их концентрациях) по сравнению с различными органическими катионами. Весьма полезным оказалось применение таких пластифицированных мембранных электродов для различных титриметрических анализов. На рис. 9.2 представлена кривая титрования гидрохлорида дифениламина тетрафенилборатом. [c.115]

    Мембраны из ионитов первыми испытывались для мембранных электродов [1 ]. Как правило, мембраны из катионита или анионита обратимы к катионам или анионам соответственно, но обратимость их к одному из многих присутствующих в растворе ионов одного и того же знака представляет исключительное свойство, отмеченное лишь в небольшом числе случаев, примером которых может служить стеклянный электрод, селективный к ионам водорода [2, 3] (см. гл. IX). Поэтому прилагались многие усилия для создания мембранных систем, специфически обратимых к одному из ионов в присутствии других. В этой главе описано получение электродов с твердыми мембранами, селективных к катионам. [c.174]

    В гл. III коротко рассмотрены теоретические основы функционирования электродов с жидкими мембранами. В этой главе описаны конструкции и применение таких электродов, селективных к анионам и катионам. [c.213]

    Стеклянный электрод. По принципу работы стеклянный электрод относится к так называемым ион-селективным (мембранным) электродам. В основе работы таких электродов лежат ионообменные реакции, протекающие на границах мембран с растворами электролитов, т. е. в электродных реакциях электроны участия не принимают. Ионсе-лективные электроды могут быть обратимы как по катиону, так и по аниону в зависимости от свойств используемой мембраны. [c.253]


    Электроды с твердыми мембранами, селективные к катионам, обычно изготавливают двумя методами. Один из них заключается в использовании в качестве мембраны монокристалла или прессованного диска. Например, кристалл сульфида серебра, в котором подвижными частицами являются ионы серебра, может применяться для определения А + или 5 . Тем же целям служит осадок Ag2S в виде прессованной таблетки. Растворимость Ag2S очень мала, и в этот осадок, как в инертную матрицу, запрессовывают сульфиды других металлов. Так получают мембранные электроды, селективные к ионам этих металлов [4]. Если исследуемый раствор первоначально не содержит ионов серебра, то их активность (ад +) на границе мембраны и раствора дается выражением  [c.174]

    Краткая историческая справка. Первым представителем мембранных электродов следует считать стеклянный электрод, открытый и изученный как Н -селективный электрод в начале нашего столетия. В дальнейшем была исследована обратимость различных стеклянных мембран к другим катионам ( N L, К Са и др.). Так, в 1934 г. предложен КО селективный стеклянный электрод в 1935-193 7 гг. исследования в этом направлении ведут в США И. Кольтгоф, а в Советском Союзе Б.П. Никольский, В.А. Каргин и др. В 1961 г. появляется первое упоминание об осадочных мембранных электродах (Венгрия, Е. Пунгор). Промышленное изготовление (в том числе Г -селектиБНого электрода) начинается с 1966 г. Первые работы по жидким мембранам относятся к 1967-1970 гг. В настоящее время как в СССР, так и эа рубежом в различных научно-исследовательских центрах ведутся систематические работы по изучению электродных свойств разнообразных мембран. [c.39]

    В настоящее время известно довольно большое количество электродов с гомогенными мембранами как с катионной, так и анионной функцией, В качестве мембран используют тонкие пластины кристаллических соещшеняй. Мембраны должны быть механически прочными, химически усто11чивыми и обладать малой растворимостью. Типичным примером гомогенного твердого мембранного электрода является фторид-селективный электрод на основе фторида лантана. Для уменьи ения объемного сопротивпения монокристалла вводят добавки двухзарядного катиона, например ионов Фторидная функция с теоретическим [c.53]

    Определяют коэффициенты селективности /с" ИСЭ к иону натрия относительно посторонних катионов, пользуясь методом раздельных растворов. Для этого измеряют нотенциал ИСЭ в 0,1 М растворе МаС1 ( ,), а затем, иромьш мембрану электрода дистиллированной водой, погружают его в 0,1 М раствор КС1 (КН4С1, НС1) и вновь измеряют нотенциал ( к). [c.203]

    Из выражения (6.14) следует, что селективность жидкостных мембран зависит от коэффициентов распределения и подвижности ионов А" и в". В случае полной диссоциации молекул ионита (чего следует ожидать в растворителях с высокой диэлектрической проницаемостью) подвижность ионов определяется только природой растворителя и не зависит от природы аниона К . Так, вводя карбоновые, сульфоновые или фосфорорганические кислоты с длинной цепью в нитробензол или нитрометан, можно получить на их основе мембранные электроды с высокой селективностью к различным катионам. При этом неважно, какого рода группы - карбоксильные, сульфатные или фосфатные - введены в качестве ионообменных. Если вместо кислоты в нитробензол ввести анионообменные молекулы, например тетраалкиламмониевые соли, то получим анионоселективный электрод, селективность которого уменьшается в ряду Г > Вг > СГ > Р. [c.179]

    Жидкие мембранные электроды на основе ионных ассоциатов, образуемых анионом Sb Ig с катионами основных красителей (севроновым красным L и L, флавиндулином О, феназиндули-ном О), предложено использовать для определения Sb(V) и Sb(III) [1066]. Эти электроды более селективны к Sb(V), чем к Sb(III). Потенциал электрода пропорционален концентрации Sb(V) в пределах 10 —10 г-ион л. [c.98]

    Гетероциклические азосоединения стали применять и в электрохимических методах анализа. Описано приготовление ионселектив-ного электрода с жидкими мембранами, содержащими в качестве активного вещества соль кристаллического фиолетового и ПАР [636]. По селективности этого электрода к анионам установлен ряд оранжевый IV > солохромовый фиолетовый РС > С10 > ПАР > > ]> НОз. Отклик электрода не зависит от pH лишь в той области, где не изменяется строение катиона и аниона соли, входящей в мембрану. Электроды использованы как индикаторы при потенциометрическом титровании красителей стандартным раствором кристаллического фиолетового. [c.191]

    На рис. 11-5 показано влияние оксида алюминия на сигнал стеклянного мембранного электрода. Если стеклянный электрод идеально-отвечает на присутствие ионов водорода в обычном диапазоне pH, то потенциал электрода будет линейно изменяться с измерением pH (диагональная сплошная линия на рис. 11-5). Электроды, изготовленные из обычного известково-натриевого стекла, проявляют ожидаемый линейный отклик на ион водорода почти вплоть до рН=10, выше возникают отклонения или щелочная погрешность вследствие мешающего влияния катионов щелочных элементов ион натрия является самой больщой помехой, за которым следует ион лития и калия. Однако стеклянный мембранный электрод, состоящий из 1,7% АЬОз, 10,9% ЫааО и 87,4% (моль.) ЗЮг, ведет себя совершенно по-иному в очень сильнокислой среде наблюдается нормальный отклик на pH, но при повышении pH электрод становится заметно чувствительным к 0,1 Л1 растворам иона натрия или калия (при рН>2) и иона лития (при рН>4). При равных концентрациях иона водорода и катиона каждого щелочного металла стеклянный электрод, содержащий АЬОз, более чувствителен к иону водорода, но при рН>1 селективность такого электрода к иону щелочного металла повышается. Между 5 и 6 единицами pH пунктирные линии на нижней части рис. 11-5 становятся горизонтальными, указывая, что натриевоалюмосиликатное стекло не реагирует более на присутствие протонов, а только на присутствие ионов щелочных металлов. Хотя свойства натриевоалюмосиликатного стекла (см. рис. 11-5) не являются оптимальными, ионообменные центры во внеш  [c.380]

    Хотя мембранные электроды применялись с большим успехом для измерения активностей катионов главной подгруппы 1-й и 2-й групп, они имеют ряд специфичных недостатков. В некоторых системах потенциал довольно чувствителен к скорости размешивания [187]. Более того, поскольку потенциал обычно зависит от активностей всех форм, которые могут взаимодействовать с мембраной, то интерпретация результатов усложняется, если присутствует более одного типа катиона как с одной стороны, так и с обеих сторон мембраны [25, 99, 205]. Вообще говоря, надежные измерения в значительной степени ограничиваются растворами, которые содержат только один катион, и в этих случаях не нужно использовать постоянную ионную среду для контроля коэффициентов активности. Однако, по-видимому, возможно разработать селективные мембраны, проницаемые для одних катионов и непроницаемые для других. Например, потенциал электрода из калийной глины (potassium lay) не зависит от концентрации ионов кальция, и предполагается [87], что растворы, содержащие пары катионов, можно будет исследовать с применением двух мембран с разной проницаемостью для двух ионов. Грегор и Схонхорн [86 сообщили, что многослойный стеарат бария с осью ориентации, перпендикулярной направлению переноса, обратим к ионам бария в присутствии ионов натрия. Равновесие достигается быстро, но так как электрод обладает большим сопротивлением, необходимо использовать ламповый потенциометр. В принципе таким же образом ориентированные мембранные электроды мо- [c.166]

    Применяются также жидкие мембранные электроды со сложным органическим катионом диметилдистеариламмонием. Данный электрод характеризуется следующими константами селективности  [c.88]

    Для всех катионов, кроме иона водорода, мешающее действие обусловлено ионообменными процессами, при которых мешающий ион замещает основной ион в радикал-ионной соли мембраны датчика. В первом приближении степень мешающего действия определяется величиной произведения растворимости соответствующих солей. Например, для ( 6H5)4As(DTF) мембранного электрода определены следующие коэффициенты селективности < 10 для Li . Na" , К 10 для Н-" 10 " для РЬ2 + 10 для Са"+ и 10 для [c.120]

    Как уже говорилось в разд. 9.2, получены ион-селективные мембранные электроды на основе солей радикал-иона 7,7,8,8-тетрациан-хинодиметана. Такие электроды чувствительны к различным катионам [c.124]

    В работе [411] описан электрод с жидкой мембраной, селективный по отношению к трифторацетату, полученный методом экстракции органическим растворителем. Трифторуксусная кислота широко используется как растворитель, катализатор и реагент для зашиты различных функциональных групп в органическом синтезе. Трифторацетат образует комплексы — ионные ассоциаты с катионами больших размеров типа кристаллического фиолетового или хелатов металлов с 1,10-фенантролином, причем последние легко экстрагируются органическим растворителем. Мембрану готовят таким же образом, как для электродов, чувствительных к малеиновой и фталевой кислотам. Электродная функция линейна в области активностей от 3-10 до 10 М, нернстов наклон равен 60 мВ/декада, а время отклика в растворах, где имеется только трифторацетат, составляет несколько секунд. Можно ожидать, что чувствительность электродов с жидкой мембраной зависит от способности таких комплексов к экстракции, которая в свою очередь определяется природой растворителя в мембране и характером ионообменных активных центров (обмениваюшихся ионов). Электрод с мембраной, заполненной нитробензолом, в котором растворен комплекс трис-(батофенантролин) железа(П) и трифторацетата с концентрацией 10 моль/л, дает почти такую же электродную функцию, как и электрод с мембраной, заполненной кристаллическим фиолетовым исключение составляют только очень разбавленные растворы пробы [411]. Среди исследованных растворителей (нитробензол, 1,2-дихлорэтан, хлороформ) наилучшим оказался растворитель с самой высокой диэлектрической проницаемостью (нитробензол), он обеспечивает максимальную чувствительность мембранного электрода. Чувствительность электрода выше, если концентрация ион-ассоциированного комплекса меньше, однако при концентрации в мембране менее 5-10 моль/л потенциал нестабилен из-за возрастаюшего электрического сопротивления мембраны. Снижение чувствительности электрода с увеличением концентрации активного вещества в мембране можно объяснить тем, что при этом происходит утечка ион-ассоциированного комплекса из мембраны в анализируемый раствор. Оптимальная концентрация комплекса, как установлено, составляет 10 " — 3 10 моль/л. [c.138]

    Хопиртеан и Штефанига [601] исследовали зависимость потенциала от концентрации нового вида мембранных электродов, в которых платиновая проволока покрыта мембраной из поливинилхлорида, пластифицированного дибутилфталатом и содержащего тетрафенилборат такие электроды селективны по отношению к органическим катионам, например витаминам Bi и В . Электрод указанного типа пригоден для определения этих витаминов методом прямой потенциометрии или потенциометрического титрования тетрафенилбората натрия. [c.201]

    В последние годы появились различные твердые и жидкие органические ионообменники, выпускаемые разными фирмами. Жидкие ионообменники, в которых анионные и катионные группы имеют значительную степень свободы движения, по сравнению с таковой для твердых ионообменников, обладают селективностью к катионам и анионам без проявления предпочтительности к отдельному иону. Справедливо это и относительно твердых ионообменников. Последние благодаря удобству работы с ними все более широко начинают применять в различных важных технологических процессах. О некоторых органических жидких ионообменниках, используемых в ионоселективных электродах, пойдет речь в гл. VIII, специально посвященной жидким мембранным электродам. В твердых мембранных электродах (они детально рассмотрены в различных главах книги) применяют органические полимеры для закрепления специальных соединений, проявляющих селективность к отдельным ионам. Типичные твердые органические ионообменники, применяемые в различных процессах разделения, выпускают в удобной для использования в качестве мембран форме, но ни из одного из них не было изготовлено практически полезного электрода. Однако в фундаментальных исследованиях ионного обмена и транспорта ионов твердые ионообменники в форме мембран оказались очень ценными их использовали как модели биологических мембран. В монографиях [1—7] и обзорных статьях [8—12] содержатся данные [c.97]

    Измерения импеданса проводили также Бранд и Речниц на электродах с жидкими [54] и стеклянными [55] мембранами. Их проверка свойств импеданса стеклянного электрода показала, что при высоких частотах 2р каждого электрода стремится к предельному значению (около 10 КОм), а — к нулю. Диаграммы типа Коуля—Коуля для электродов, обратимых к одновалентным катионам, как уже говорилось, представляли собой асимметричный полукруг с центром ниже реальной оси и напоминали кривые, полученные ранее для электродов с жидкими мембранами [54]. Те же зависимости обнаружены для №- и Ыа -селективных электродов [55]. Кроме того, при низких частотах наблюдался второй асимметричный полукруг, особенно явственный для рН-электро-дов. Это, как уже описано, указывает на присутствие гидролизованной поверхностной пленки (гелевого слоя) на стекле. Наличие этой пленки не характерно для стеклянных мембран электродов, обратимых к одновалентным катионам. Если гелевый слой отсутствует, экстраполяция участка полукруга к высоким частотам до пересечения с реальной осью дает значения / р.р — последовательно включенного сопротивления, обусловленного электродом сравнения и раствором. Если 2 есть импеданс неизменной толщи стекла (в отсутствие гелевого слоя), тогда [c.285]

    В твердых мембранных электродах используют материалы, обладающие ионной проводимостью — кристаллы, смешанные кристаллы, поликристаллические твердые вещества. Кристаллический фторид лантана (LaFs) обладает высокой электрической проводимостью за счет чрезвычайной подвижности иона фтора в решетке кристалла. Для повышения проводимости добавляют катион европия(II) и получают чувствительный и селективный к иону фтора мембранный электрод. Во внутреннем отделении электрода, выпускаемого промышленностью, имеется раствор, содержащий смесь раствора фторида натрия молярной концентрацией (NaF)=0,l моль/дм и раствора хлорида натрия той же концентрации. В этот раствор опущен хлорсеребряный электрод сравнения. Единственным мешающим ионом при использовании этого электрода для измерения фтора является гидроксид-ион, но электрод проявляет по крайней мере тысячекратную чувствительность к фториду по сравнению с хлорид-, бромид-, иодид-, нитрат-, бикарбонат- и сульфат-ионами. [c.265]

    На основе лиганда VH также получен жидкостный чувствительный к Sr2+ электрод [156, с. 22 178]. Однако он теряет 5г2+-функцию в присутствии ионов Ва +. Если сравнить ионоселективные электроды с катионными функциями на основе жидких ионитов, с одной стороны, и хелатов (МАК) — с другой, то можно прийти к заключению, что второй тип электродов имеет более высокие характеристики. Не говоря уже о калиевом валиномициновом электроде, высокочувствительные Са2+-электроды, а также электроды с NHi- и Li -функциями, созданные на основе нейтральных лигандов, особенно указанных выше структур (см. стр. 76, 77, 86, 88), характеризуются высокими показателями по селективности и чувствительности. В эту новую область ионометрии неоценимый вклад внесли упоминавшиеся выше работы швейцарской школы химиков во главе с Симоном. Однако механизм возникновения катионных функций у мембран с нейтральными комплексонами выяснен еще далеко не полностью. Поэтому дальнейшее изучение связи структуры нейтральных лигандов с взаимодействием их с центральным ионом, роли полярных и неполярных групп, а также транспорта катионов и анионов через соответствующие мембраны чрезвычайно желательно. [c.88]

    Наряду с поисками жидкостных ионоселективных электродов продолжаются работы по созданию поликристаллических мембран, обратимых к катионам металлов, что объясняется большей надежностью и длительностью работы твердофазных ионоселективных электродов. Предложен Мп +-селективный электрод с мембраной на основе МП2Р2О7 в качестве электродно-активного вещества. Мембрану наносили на пластину из металлического Мп, соединенную с токоотводом с помощью сплава Вуда. Градуировочный график линеен в интервале концентраций 10 —Ю М, угловой коэффициент 55 мВ/рМп. От известного [c.121]

    Чем обусловлена селективность ионных каналов в биологических мембранах В соответствии с простой и изящной теорией Эйзенмана (G. Eisenman, 1962), предложенной вначале для ионпроводящей мембраны ионселективных электродов, селективность определяют два основных фактора радиус анионного центра связывания катиона в канале и энергия дегидратации катиона. В случае одновалентных катионов, например, величина энергии, необходимой для отщепления воды, увеличивается в ряду s+ (281,5 кДж/моль) [c.37]

    Ряд работ, посвященных изучению поведения мембранных электродов в качестве обратимых электродов, был проведен Е. А. Матеровой, Б. П. Никольским, Ф. А. Кожакиной [78], Е. А. Матеровой и Ф. А. Белинской [79] и Ф. А. Белинской [80]. Исследовались мембранные электроды, обратимые по отношению к катионам и анионам. Мерой селективности мембранных электродов считалось отношение оп/- теорет- [c.103]

    Изучение биологических мембран привело к разработке электродов на основе так называемых "нейтральных переносчиков" -макроциклических полиэфиров - антибиотиков (моноактин, грамицидин, валиномицин). Молекулы циклических полиэфиров содержат кольца иа атомов кислорода, энергетически способные вьшолнять роль сольватной оболочки вокруг катиона. Таким образом, происходит внедрение катиона в органическую фа у. При этом образуются подвижные заряженные комплексы, обеспечивающие катионную проводимость таких сред. Среди них наиболее известен К -селективный электрод с жидкой мембраной - раствором ва-линомицина в органическом растворителе. Коэффициенты селек-tивнo ти составляют = Ю- , = 1  [c.57]

    III. Электроды с мембраной на основе мембраноактивных комплексонов. В 60-х гг. были предложены для получения ИСЭ нейтральные комплексоны, способные связывать катионы щелочных (Li+, Na+, К+, Rb+, s+) и щелочноземельных металлов (Са"" , Ва ). а также NH , NR<. Эти катионы, попадая во внутреннюю полость молекул подобного соединения, удерживаются в ней прочными координационными силами с такими полярными группами, как амидные, эфирные, сложноэфирные. Такое комплексообразование часто является селективным для [c.530]

    В качестве активных компонентов мембран для определения нитрат-ионов используются также четвертичные аммониевые и фосфониевые соли. Электроды характеризуются крутизной электродной функции, близкой к теоретической, в диапазоне концентраций от 10 до 10 моль/л. Коэффициенты селективности по отношению к ионам СГ, NO2 , 804 не превышают 10 . Ионообмен-ники на основе солей тетраалкиламмония находят применение для изготовления хлоридных электродов. В качестве органического катиона в них используется диметилдистеариламмоний. Электроды можно применять для измерения активности ионов хлора в присутствии сульфид-ионов, которые оказывают значительное влияние на показания твердых хлоридных электродов. Основные [c.204]

    В общем случае селективность ионообменных мембран ограничена избирательным переносом катионов (катионообменные мембраны) или анионов (анионообменные мембраны). Соответственно основная область их применения в электродиализе — суммарное выделение катионов или анионов из растворов с целью обессоливания морской воды или очистки сточных вод. Применение электродиализа для суммарного концентрирования ионных форм элементов в аналитических целях ограничено, с одаюй стороны, неполнотой концентрирования и, с другой стороны, протеканием электрохимических реакций на электродах с участием концентрируемых форм, что приводит к усложнению их последующего аналитического определения. [c.218]

    Наиболее совершенным электродом с 1фисталлической мембраной является F -селективный электрод (рис. 10.13). Мембрана его выполнена из пластинки монокристалла фторида лантана, активтфованного для увеличения дефектов решетки (понижения электрического сопротивления) фторидом двухзарядного катиона (б ий, европий). [c.136]

    Жидкая мембрана — это тонкий слой жидкого органического вещества, оно не смешивается с водными растворами и содержит кислотные или основные группы — жидкий ионит. Потенциал устанавливается на поверхности между анализируемым раствором и органической жидкостью, селективно реагирующей с определяемым ионом. Электрод с жидкой мембраной (рис. 7.1) состоит из двух трубок и пористого пластикового диска. Органическое вещество, нанесенное тонким слоем на пористый диск, препятствует смешиванию двух водных растворов стандартного и анализируемого. Внутренняя трубка заполнена стандартным растдором определяемого катиона, насыщенного А С1. При погружении в него серебряной проволоки образуется Ag/Ag l — электрод сравнения. На границе раздела органического вещества с водным раствором двухзарядного катиона устанавливается равновесие  [c.106]


Смотреть страницы где упоминается термин Мембранный электрод, селективный катионам: [c.271]    [c.129]    [c.153]    [c.170]    [c.99]    [c.153]    [c.132]    [c.177]    [c.87]   
Мембранные электроды (1979) -- [ c.13 , c.21 , c.174 , c.175 ]




ПОИСК





Смотрите так же термины и статьи:

Ион-селективные электроды

Ион-селективные электроды электроды

Катиониты селективность

Катионная селективность

Мембранные

Электрод мембранный



© 2025 chem21.info Реклама на сайте