Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Битумы влияние ПАВ

    Столь значительный рост производства и потребления битумов, а также повышение требований к их качеству настоятельно требуют более глубокого и всестороннего изучения состава и свойств битумов, влияния параметров технологического режима, кинетики и гидродинамики процессов и природы сырья на эти показатели. Применение новых схем-и средств автоматизации позволит комплексно автоматизировать и интенсифицировать процессы производства битумов. Анализ технико-экономических показателей работы битумных установок определит наиболее рациональный способ их производства. [c.5]


    С увеличением давления получается продукт с более высокой пенетрацией при одинаковой температуре размягчения (рис. 25) [60], что для производства большей части окисленных битумов предпочтительнее [11]. Такое влияние давления объясняется [И] уменьшением потерь дистиллята (в виде отгона) и окислением дистиллята в промежуточные смолы и далее -в асфальтены. Все же в связи с усложнением оборудования окисление под давлением не нашло широкого применения, а величина давления не превышает 0,25—0,30 МПа [И].  [c.49]

    При выборе температуры окисления необходимо учитывать также возможность ее влияния на свойства битума. Применительно к окислению в колонне это влияние нуждается в изучении, поскольку обобщающих рекомендаций нет. Здесь, как и в случае окисления в кубе периодического действия, существует опасность ухудшения качества продукции при повышении температуры окисления. Р. Б. Гун [2], ссылаясь на литературные данные, указывает на ухудшение теплостойкости битумов, полученных при повышенных температурах окисления в колонне непрерывного действия. Однако фактически эти данные получены для процесса периодического окисления [60], и их непосредственный перенос на непрерывный процесс неправомерен, поскольку режим работы аппаратов периодического и непрерывного действия различен. Если колонна работает в режиме, близком к режиму идеального смешения, и время пребывания [c.62]

    Азотистые основания используются как дезинфицирующие средства, антисептики, ингибиторы коррозии, как добавки к смазочным маслам и битумам, антиокислители и т. д. Однако наряду с положительным влиянием азотистых соединений они обладают и нежелательными свойствами — снижают активность катализаторов в процессах деструктивной переработки нефти, вызывают осмоление и потемнение нефтепродуктов. Высокая концентрация азотистых соединений в бензинах (1- Ю вес. %) приводит к усиленному коксо-и газообразованию при их каталитическом риформинге. Даже небольшое количество азотистых соединений в бензине способствует усилению лакообразования в поршневой группе двигателя и отложению смол в карбюраторе. Наиболее полно удаляются азотистые соединения из нефтяных фракций 25%-ным раствором серной кислоты. [c.30]

    Битумы И типа представлены жидкообразной надмолекулярной дисперсной структурой смол, растворенных в углеводородах, в которой асфальтены, как правило, не связаны и не взаимодействуют друг с другом. Основные прочностные, деформационные и адгезионные свойства битума И тииа, а также процессы изменения его под влиянием окислительных воздействий обусловлены высоко-структурированной дисперсионной средой битума. Влияние асфальтенов сказывается лишь на величине отдельных деформационных характеристик битума и степени взаимодействия его с поверхностью минеральных материалов. [c.179]


    Влияние температуры окисления на качество битума изучалось многими исследователями на различном сырье [62—66], но обобщающих зависимостей не представлено. Более того, выводы, сделанные разными авторами, иногда противоречивы и не всегда экспериментально оправданы. В работе [62 отмечается, что зависимость пенетрации дорожных битумов от температуры окисления проходит через максимум при 250 °С. Экстремальный характер этой зависимости не объясняется, но одновременно отмечается, что при повышении температуры окисления с 250 до 270 °С расход воздуха и продолжительность окисления увеличиваются. Это может быть объяснено только нарушением условий постоянства других параметров процесса, который изучался на промышленном кубе. Более высокая пенетрация битума и большая длительность процесса окисления [c.49]

    Из приведенных данных видно, что температура оказывает существенное влияние на процесс образования битумов. Влияние это сказывается прежде всего в повышении выходов битума с увеличением температуры. Достигнув своего оптимума при 300°, выход битумов составил около 27%. [c.49]

    Структура второго типа представляет собой стабилизованную разбавленную суспензию асфальтенов в сильно структурированной смолами дисперсионной среде. Подобная структура характерна для битумов, содержащих менее 18% асфальтенов, более 36% смол и менее 48% углеводородов. Доля асфальтенов общей сумме смолисто-асфальтеновых веществ составляет менее 0,34, а по отношению к сумме углеводородов и смол — менее 0,22. При промежуточном групповом химическом составе битума строение последнего характеризуется наличием элементов структуры обоих типов. Отдельные компоненты битумов одного и того же типа, но полученных из разных нефтей, могут различаться химическим составом. Это оказывает некоторое дополнительное влияние на структуры. Так, в случае битумов, полученных из крекинг-остатков и имеющих лиофобные плохо набухающие асфальтены, для создания коагуляционного каркаса требуется большее число структурообразующих частиц в единице объема и, следовательно, более высокое содержание асфальтенов. [c.15]

    Рис, 25. Влияние давления при окислении на свойства битумов, полученных из гудрона луизианской нефти.  [c.49]

Рис. 26. Влияние температуры окисления на свойства битумов, полученных из гудрона луизианской нефти. Рис. 26. <a href="/info/1777874">Влияние температуры окисления</a> на <a href="/info/62711">свойства битумов</a>, полученных из гудрона луизианской нефти.
    Рис, 27. Влияние температуры окисления на пенетрацию битумов с температурой размягчения 66° С, полученных из гудрона луизианской нефти. [c.50]

    В большинстве случаев повышение температуры окисления приводит к уменьшению пенетрации битума с заданной температурой размягчения (рис. 26) [60]. Однако, как видно из рис. 27, в интервале температур 250—280 °С, при которых наблюдаются более высокие скорости реакций, эффект менее заметен, чем, например, в интервале температур 180—210 °С, не представляющих практического интереса из-за низкой скорости реакции. При дальнейшем повышении температуры до 300 °С влияние температуры на свойства битумов вновь может проявляться значительнее. Так, битумы с температурой размягчения 55 °С, полученные окислением гудрона средневосточной нефти при 250, 275 и 300 °С, имеют пенетрацию при 25 °С соответственно 42, 41 и 35-0,1 мм [61]. Возможно, основной причиной рассматриваемого эффекта являются в области низких температур — уменьшение содержания кислородсодержащих соединений в битуме при повышении температуры окисления, в области высоких — деполимеризация. Поэтому нужно проводить экспериментальную проверку роли условий окисления во избежание необоснованного отказа от повышения температуры, способствующего увеличению производительности. В случае окисления при высокой температуре рекомендуется охлаждать готовый битум сразу после его получения на 20 °С [c.50]

    В связи с этим вопрос о возможном влиянии температуры окисления на свойства битума следует решать опытным путем для каждого конкретного случая. С целью оценки роли температуры окисления проведены специальные промышленные испытания. Так, показано, что при использовании в качестве сырья гудрона с условной вязкостью при 80 °С 77—98 с повышение температуры окисления с 267 до 287 °С почти не отражается на свойствах строительных битумов (рис. 33) [74, 83]. Окисление гудрона с условной вязкостью 50 с при температуре 290 °С приводит к получению битумов, удовлетворяющих требования стандарта (рис. 34) [75]. Нужно также отметить промышленный опыт окисления асфальтов при температурах 280 °С [84] и 290 °С [85] с получением битумов разных марок. Таким образом, можно считать установленной возможность повышения температуры во многих случаях до 290 °С, что особенно целесообразно при производстве строительных битумов. [c.63]

    Изменение реологического поведения предопределяет изменение технических свойств битумов. Повышение степени структурированности битумов с одинаковой пенетрацией при 25° приводит к повышению температуры размягчения, увеличению пене-трации при О °С и уменьшению дуктильности. Изменение молекулярной массы масляного компонента также оказывает некоторое влияние на свойства битума, сказываясь прежде всего на консистенции при уменьшении молекулярной массы заметно увеличивается разбавляющая способность масел. [c.287]


    Большое влияние на эффективность работы окислительной колонны оказывает высота рабочей зоны, т. е. барботажного слоя, или расстояние между маточником, через который вво-дится воздух, и уровнем раздела реагирующих газовой и жидкой фаз. При увеличении высоты барботажного слоя должна увеличиться продолжительность контакта между поднимающимися пузырьками воздуха и окисляемой жидкостью, что проявится в уменьшении содержания кислорода в отработанных газах окисления. Это показано на примере промышленного производства дорожных и строительных битумов при температуре [c.63]

    В работе [47] изучено влияние глубины отбора дистиллятов при получении гудронов из арланской нефти на состав и свойства окисленных битумов (табл. 13). Как видно из представлен ных результатов, битумы с одинаковой пенетрацией при 25°С, полученные из более тяжелого сырья, содержат меньше асфальтенов и масел и больше смол. Температура размягчения таких битумов ниже, а дуктильность выше. [c.85]

    Изучалось также влияние температуры на состав и свойства битумов. В работе [118] показано, что при повышении температуры окисления гудронов в интервале 232—260°С незначительно увеличивается содержание асфальтенов (примерно на 3% отн.) в битумах с температурой размягчения 104°С и уменьшается пенетрация при 25°С на один пункт. В целом же отмечается, что в процессе окисления содержание асфальтенов увеличивается существенно, а ненасыщенных — почти не меняется. Нафтеноароматические углеводороды превращаются в полярные ароматические, а последние в свою очередь — в асфальтены. [c.85]

    Для того чтобы объяснить различные особенности влияния полукоксов на трещиноватость, и в частности, влияния их выхода летучих веществ, обращались к разным явлениям, таким как адсорбция битумов, экзотермическая реакция, изменяющая температурный градиент и др. Но, в конце концов, представляется, что сущность влияния полукокса можно объяснить так же, как и коксовой мелочи, правильным и точным применением механической теории трещиноватости. Мы кратко напомним принцип этой теории, а затем укажем, как с ее помощью можно объяснить влияние отощающих добавок. [c.283]

    Существующие на сегодняшний день технологии получения ПБВ имеют ряд недостатков. Во-первых, использование дорогостоящих полимерных материалов резко увеличивает стоимость ПБВ и тем самым стоимость дорожного покрытия. Во-вторых, не всегда учитываются химический состав битума, особенности химического строения полимера и, как следствие, вопросы совместимости полимера с битумом. Большое влияние на совместимость оказывает пластификатор. С помощью подбора оптимального состава и количества пластификатора можно решить следующие проблемы  [c.72]

    Следовательно, нельзя говорить о значимом влиянии на процесс окисления реактивного топлива содержащихся в отходящем газе активных продуктов непосредственно самого процесса производства битума. [c.83]

    Качество битумов будет оказывать непосредственное влияние на срок эксплуатации металлических поверхностей. Изоляционные битумы могут быть применены далеко не в широком интервале температур (до 90 С). Их получают окислением гудрона нефти кислородом воздуха или компаундированием окисленного и остаточного битума с различными добавками и наполнителями. Основными требованиями, которые предъявляются в настоящее время к изоляционным битумам, являются высокая температура размягчения, хорошие адгезионные свойства, достаточная пластичность и теплостойкость. [c.23]

    Дуктильность. Дуктильность большинства битумов в результате их модифицирования эластомерами возрастает. Асфальтобетоны, которые при комнатной температуре обычно имеют дуктильность, далекую от максимально определяемой на машине (150 см), при модификации соответствующим эластомером могут превысить эту предельную величину. Окисленные битумы характеризуются более низкой дуктильностью, чем асфальтобетоны, причем с ростом температуры и продолжительности окисления дуктильность снижается. При введении эластомера дуктильность битума возрастает, что расширяет возможности использования окисленного битума. Влияние эластомеров на эксплуатационные свойства битумов при низкой тем-пературе оценивается путем определения дуктильности при 4 °С. и скорости растяжения 5 см/мин. Исследуя этим методом действие серы на смесь натурального каучука и битума, Уелборн и Баба1ыек 14] установили, что при низкой температуре дуктильность может [c.221]

    Однако гипотеза раздельного образования битумов только из смол и восков, сапропелитовых веществ из жиров, а гуминовых веществ — преимущественно из лигнина высших растений встречает серьезные возражения. Невозможно допустить изолированное превращение отдельных химических составных частей растений без взаимодействия между ними. Трудно принять, что только отдельные составные части растений могли участвовать в образовании торфа, бурых и каменных углей, а другие полностью разложились и не оказали никакого влияния на процессы образования углей. [c.39]

    Влияние температуры кипения растворителя на выход битумов исследовал Панченко. Им было найдено, что бензол (80 °С) извлекает 0,40%, толуол (110°С)—0,65% и ксилол (136—145°С) — 0,85% экстракта. [c.155]

Таблица 20 Влияние растворителей на выход битумов Таблица 20 <a href="/info/186229">Влияние растворителей</a> на выход битумов
    Так как мастики состоят на 75-9( из битумов, то свойства мастик определяются в основном качеством битумов. Влияние различных климатических факторов вызывает структурные изменения битумов и растягивающие напряжения в слоях водоизоляциснного ковра. В то же вреш кровельные битумы должна обеспечивать в течение длительного времени водонепроницаемость кровель и поэтому их свойства должны быть стабильными во времени. [c.30]

    В табл. 2 представлены данные, показывающие влияние сырья и технологии его переработки на степень аномалии вязкости битумов. Как видно, битумы, имеющие примерно одинаковую температуру размягчения (48,5 4,5°С), но полученные окислением остатков разных нефтей, различаются степенью аномалии. Так, битум из нефти месторождения Галф Коаст I, являющийся в обычном представлении твердым телом, имеет характер течения ньютоновской жидкости. В то же время несколько более мягкий битум из нефти северо-восточного Техаса отличается заметной аномалией течения. При использовании одного и того же сырья битумы, получаемые перегонкой с паром или в вакууме, в меньшей степени обладают свойствами неньютоновской жидкости, чем окисленные битумы. Углубление переработки сырья, т. е. получение более высокоплавких битумов, как в процессе перегонки, так и в процессе окисления приводит к повышению аномальности битумов, причем в случае окисления это влияние существеннее. Степень окисления, определяемая, например, разностью температур размягчения битума н сырья, оказывает большое влияние на аномалию течения битума при окислении до одинаковой температуры размягчения гудронов разной вязкости, полученных из одной нефти, наиболее ярко вы- [c.17]

    Рассматривая трехкомпонентную систему (асфальтены, смолы и масла), можно ббнаружить -следующее [440] пенетрация повышается с увеличением отношения масла асфальтены и почти не зависит от содержания смол температура размягчения возрастает с уменьшением отношения масла асфальтены и почти не зависит от содержания смол температура хрупкости понижается с увеличением отношения масла асфальтены и не зависит от срдержания смол растяжимость имеет максимальное значение (более 100 см) при отношении масла асфальтены от 2 до 5. Для более твердых битумов влияние содержания смол незначительно интервал пластичности прямо пропорционально зависит главным образом от содерл ания асфальтенов, в некоторых случаях увеличение отношения масла асфальтены повышает интервал пластичности. [c.38]

    Исследование окисления одного и того же сырья — гудрона с температурой размягчения 38°С в битумы на окислительной колонне непрерывного действия с проти-воточным движением сырья и сжатого воздуха показало следующее влияние условий окисления на свойства битумов. Влияние температуры окисления на качество битумов при постоянном расходе воздуха 3,52 л1мин-кг 5,85-10- м /сек-кг) и избыточном давлении в реакторе 0,1 кГ1см (0,98-10 н/м ) иллюстрируется кривыми [c.130]

    Дуктильность [13] теспо связана с твердостью и типом битума. Влияние твердости может быть оценено сравнением битумов при эквивалептной температуре. Влияние типа битума показано на фиг. 9, где на основании около 200 измерений дуктильности битумов Венецуэлы дается зависимость между дуктильпостью и эквивалентной температурой для битумов с различным ИП. Необходимо раз.личать два явления  [c.22]

    Растяжимость (ГОСТ 11505—65) характеризует свойство битума под влиянием приложенной силыи определенной темнературы растягиваться в тонкие нити той или иной длины. Чем выше растяжимость битума, тем лучше он противостоит различным механическим воздействиям. [c.231]

    Аналогичные наблюдения сделаны при компаундировании концентрата асфальтенов с остатками перегонки нефти, содержащими незначительное количество асфальтенов. Компаундированием асфальтов бензиновой деасфальтизации и гудронов кувейтской и карачаелгинской нефтей получены четыре серии битумов смеси одноименных и разноименных гудронов и асфальтов. Установлено (рис. 9), что свойства битумов зависят от того, какой был использован гудрон, и не зависят от того, какой был использован асфальт, т. е. можно сделать заключение о несущественном влиянии природы асфальтенов на свойства биту-, мов. Такое заключение не вполне строго, так как при этом не учитывается роль асфальтенов битумов крекингового происхождения, отличающихся своим поведением (лиофобностью [10], плохой пептизируемостью [18]) от асфальтенов, не претерпевших термических превращений. Однако оно практически приемлемо, поскольку крекинт-остатки не использу от для производства битумов. [c.26]

    Как правило, аномалии зависимости температуры размягчения от пенетрации не наблюдаются, поскольку битумы, облада-юшие такими аномалиями, недостаточно стабильны, и длл практики они не представляют большого интереса. В связи с этим математическое описание зависимости температуры размягчения от пенетрации может быть довольно простым. Однако часто такие описания основаны на сомнительных допущениях, например, об отсутствии влияния на зависимость температуры размягчения от пенетрации других факторов [25], или ограничены полученным в конкретных условиях экспериментальным материалом без перехода к другим условиям [26]. Рациональным представляется следующее полуэмпирическое уравнение, предложенное в работе [27] для окисленных битумов  [c.30]

    С уменьшением содержания серы в нефти, как видно из рис. 62, повышаются температуры размягчения, снижаются температуры хрупкости и увеличиваются показатели пенетрации при 0°С битумов в то же время уменьшается дуктильность. Уменьшение содержания легких фракций в гудроне приводит к противоположным результатам. Поскольку в соответствии с требованиями стандартов необходимо обеспечить определенные значения всех этих показателей, то предпочтительнее использовать более тяжелый гудрон при уменьшении сернистости нефти. Однако в случае малосернистых, но высокопарафиннстых нефтей сказывается влияние парафина. Даже при использовании гудрона выше 600°С, т. е. наиболее тяжелого в практике отечественной нефтепереработки, дуктильность получающихся. битумов еще не соответствует требованиям стандарта. Поэтому такие нефти следует признать непригодными для производства окисленных битумов. [c.97]

    Ростгипронефтехимом предложена, и разработана установка для охлаждения битума в полиэтиленовой пленке водой. На установке используется автомат для получения рукавной пленки из полиэтилена, выпускающегося нашей промышленностью, который дополнен устройством для заполнения внутренней полости полиэтиленового рукава битумом и водяной ванной для охлаждения битума в рукаве. Процесс затаривания при применении этой установки непрерывный, и его можно автоматизировать. Во время протяжки через ванну рукав с битумом через определенные участки пережимается и затем разрезается. Таким образом получают брикеты, битума в полиэтиленовой пленке. Перед применением брикеты расплавляют, при этом пленка смешивается с битумом, но отрицательного влияния на качество битума не оказывает, поскольку расход полиэтилена невелик. Установка опробована на Новополоцком НПЗ. Основное препятствие для нормальной работы установки — расплавление отдельных участков рукавной пленки и вытекание битума в ванну. Это происходит из-за всплывания рукава с горячим битумом, имеющим плотность меиьше плотности воды, и расплавления участков пленки, не охлаждаемых водой. Увеличение числа валков, удерживающих рукав с битумом в затопленном состоянии по длине ванны, затрудняет протягивание рукава [54]. Конструкция установки нуждается в доработке. Можно отметить экспериментальные работы, проводимые в ФРГ по охлаждению битума в полипропиленовых мешках. Битум наливают в мешки, погруженные в воду, затем верх мешка заваривают и пускают мешок плыть вдоль ванны. После частичного охлаждения в воде мешок вылавливают и укладывают на бетонную площадку для придания -плоской формы и окончательного остывания [228]. [c.155]

    Констатируемое П. Торрэем отсутствие сернокислых солей объясняется вероятным восстановлением сульфатов под влиянием битумов в сернистые соединения, а затем в НдЗ по следующей схеме  [c.107]

    Таково влияние на характер нефтей динамометаморфизма . Теоретически говоря, более древние нефти подверглись и большему его влиянию. В общем, это подтверждается примером нефтей Соединенных Штатов, где палеозойские нефти, вообще говоря, легче мезозойских, мезозойские же — легче третичных. Но из этого правила много исключений, объясняемых особенностями исходного материала и геологической обстановкой того или иного месторождения. Из заводской практики нам хорошо известно, что если нефть будет перегрета, то начинается распадение ее тяжелых молекул на более легкие (на этом основан крекинг нефти). Если применить очень высокую температуру, то мы можем всю нефть превратить в газ, в составе которого главную роль будет играть метан. Вероятно, п в природе, если нефтяные залежи попадали в условия чрезвычайно высокого давления или очень больших температур, начиналось разложение нефти, которое заканчивалось разрушением углеводородов с выделением водорода и углерода. Это — крайняя степень метаморфизма органического вещества. Так, вероятно, образовался графпт — один пз крайних членов ряда битумов, а водород вследствие его малого атомного веса и крайней подвижности, вероятно, улетучился из литосферы в-атмосферу. [c.348]

    Модельные эксперименты по термодеструкции ВМС из атабасского битума в присутствии горных пород показали [1065], что энергия активации реакций отщепления коротких алифатических цепочек от макромолекул очень мала (25—60 кДж/моль). Авторы цитируемой работы объясняют это каталитическим влиянием минеральных веществ. Эти результаты подтверждают реальность протекания процессов такой деструкции в условиях недр. [c.201]

    Асфальтены. Выделение асфальтеь ов нз сложных мпогокомпо-нентных систем (нефть, гудрон, битум) основан только ма их растворимости, и вследствие этого на выход и состав асфальтенов существенное влияние оказывают природа растворителя и условия разделения. Так, по данным Пфайфера, при обработке битума мексиканской нефти пентаном осаждается 33,5% (масс.) асфальтенов на битум, 2,2,4-триметилп(штаном (изооктаном) —32,2, гептаном — 25,7, нонаном — 23,6% (масс.), циклогексаном — 0. Поэтому Пфайфер рекомендует указывать не только содержание асфальтенов, но и растворитель, который использовался при их выделении, например асфальтены пентановые, асфальтены гепта-новые, асфальтены петролейные. [c.210]

    Особенно интересны в этом отношении исследования Асбери, который изучал влияние предварительного и последующего нагревания на выход битумов. Исходные угли экстрагировались бензолом при 260 °С в течение 41 ч, в результате чего было выделено 14,7% битума В (А на рис. 41). Затем эти угли нагревали бензольными парами до 325 °С в течение 1 ч и снова экстрагировали при 260 °С в течение 12 ч. Дополнительный выход битумов составил 1,75 /о (S на рис. 41). Эти операции повторялись при 350°С (до- [c.156]


Смотреть страницы где упоминается термин Битумы влияние ПАВ: [c.471]    [c.166]    [c.553]    [c.22]    [c.119]    [c.23]    [c.25]    [c.44]    [c.48]   
Нефтяные битумы (1973) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Битумы влияние их на спекаемость углей

Битумы влияние компонентов

ВЛИЯНИЕ ХИМИЧЕСКИ АКТИВНЫХ ДОБАВОК НА СОСТАВ И СВОЙСТВА БИТУМОВ

Влияние ПАВ на старение битумов

Влияние ПАВ на структуру дорожных битумов

Влияние времени, тепла, кислорода и солнечного света на реологические свойства битумов

Влияние глубины отбора дистиллятных фракций при получении гудрона на свойства окисленных битумов

Влияние добавок ПАВ иа сцепление битума с поверхностью минерального материала

Влияние добавок ПАВ на процессы структурообразования в битуме под действием поверхности минерального материала

Влияние добавок ингибиторов на процессы старения битумов

Влияние добавок поверхностно-активных веществ на дорожные битумы

Влияние ионизирующего излучения на битумы

Влияние исходного сырья на качество битумов

Влияние качества сырья и условий окисления на материальный баланс процесса, его тепловой эффект, состав и свойства окисленных битумов

Влияние микроорганизмов на физические свойства битумов

Влияние на свойства битумов

Влияние на свойства битумов компонентов

Влияние поверхности минерального материала на свойства дорожных битумов

Влияние поверхностно-активных веществ иа эксплуатационные свойства битумов

Влияние природы сырья и технология производства на химический состав и структуру дорожных битумов

Влияние свойств битума на прочность и долговечность покрытий

Влияние свойств битума на свойства битумоминеральных материалов

Влияние твердых парафинов на структурно-механические свойства битумов, их старение и структуру пограничных слоев

Влияние температуры на процессы необратимого изменения битумов разных типов под воздействием кислорода воздуха (старение)

Влияние температуры на реологические свойства битумов

Влияние типа битума на пластические свойства и водоустойчивость битумоминерального материала

Влияние хлорного железа на процесс окисления битумов

Вязкость битумов влияние старения

Королев И.В., Ларина Т.А., Васильева Р.В Влияние концентрации минерального порошка на технологические свойства наполненного битума

Механизмы влияния ПАВ на структуру дорожных битумов

Окисленные битумы влияние температуры процесса

Печеный Б.Г., Рудакова Е.К., Цалшс И.Л. Влияние режимов вакуумной перегонки остатков внсокосернистой нефти на состав и свойства остаточных битумов

Процессы, протекающие при коксовании. Спекаемость угля. Пластическое состояние угля. Влияние битумов Гидрогенизация

Разжиженные битумы влияние минеральных наполнителей

Реологические свойства битумов влияние коллоидных свойств

Состав битумов и влияние групповых компонентов на их свойства

Спекаемость угля. Пластическое состояние угля. Влияние битумов Гидрогенизация

Старение дорожных битумов под влиянием кислорода воздуха и повышенной температуры

Фрязинов, И. Б. Грудников. Влияние компонентного состава и качеств масляного компонента на физико-химические и товарные свойства, битумов



© 2025 chem21.info Реклама на сайте