Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой диэлектрическая проницаемость

    Энергия двойного электрического слоя, как следует из теории ДЛФО, играет первостепенную роль применительно к стабильности и коагуляции дисперсных систем. Так, раствор любой присадки в масле является олеофильным коллоидом, в котором плотность заряда значительно ниже, чем в лиофобных коллоидах. Снижение плотности заряда в масле сопровождается уменьшением диэлектрической проницаемости, что приводит к образованию более проч- [c.216]


    Устойчивость эмульсий типа В/Н, как указывалось ранее, объясняется, главным образом, наличием структурно-механического барьера на границе двух фаз. Образование двойного электрического слоя у эмульсий обратного типа представлялось невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако работами последних лет показано, что даже в неполярных средах может происходить некоторая ионизация и что образующийся двойной электрический слой может играть существенную роль в устойчивости эмульсий обратного типа, особенно разбавленных. [c.32]

    Электрокапиллярная кривая при адсорбции на поверхности ртути поверхностно-активных молекул приведена на рис. 84 (кривая 2). При этом на электрокапиллярной кривой наблюдаются два потенциала десорбции точки а и е. Десорбция органических молекул с поверхности ртути при достаточно большом ее положительном или отрицательном заряде объясняется тем, что диэлектрическая проницаемость воды (около 80) больше, чем диэлектрическая проницаемость многих органических веществ (10—30). Диэлектрик с большей диэлектрической проницаемостью втягивается в электрическое поле конденсатора, причем тем сильнее, чем больше напряженность этого поля (чем больше заряд на обкладках конденсатора). Поэтому при увеличении положительного или отрицательного электрического заряда в двойном электрическом слое на поверхности ртути молекулы воды из раствора втягиваются в это поле и вытесняют молекулы органического вещества, обладающего меньшей диэлектрической проницаемостью. Таким образом максимальная адсорбция органических молекул должна достигаться вблизи потен циала нулевого заряда, где заряд поверхности металла равен нулю. [c.305]

    Для получения наиболее простого уравнения, связывающего скорость относительного движения фаз с параметрами, определяющими свойства дисперсионной среды (вязкость, диэлектрическая проницаемость), двойного электрического слоя ( -потенциал) и внешнего электрического поля (напряженность), необходимо задаться некоторыми ограничениями 1) толщина двойного электрического слоя значительно меньще радиуса пор, капилляров твердой фазы (радиуса кривизны поверхиости твердой фазы) 2) слой жидкости, непосредственно прилегающий к твердой фазе, неподвижен движение жидкости в порах твердой фазы ламинарное и подчиняется законам гидродинамики 3) распределение зарядов в двойном электрическом слое не зависит от приложенной разности потенциалов 4) твердая фаза является диэлектриком, а жидкость проводит электрический ток. [c.220]


    Следует отметить, что в области двойного электрического слоя значения диэлектрической проницаемости и вязкости дисперсионной среды иные по сравнению со значениями этих величин в объеме раствора, и это различие становится особо ощутимым, когда толщина двойного слоя и радиус капилляров твердой фазы соизмеримы, [c.223]

    Экспериментальная проверка обеих теорий показала, что первая правильно отражает строение двойного электрического слоя в концентрированных растворах. При большом содержании в растворе заряженных частиц можно допустить, что диэлектрическая проницаемость снижается до нескольких единиц (1 ч- 3). Подставив в уравнение (П1.4) указанное значение О и величину бо. равную радиусу иона [c.102]

    Наконец, принимая значения диэлектрической проницаемости и коэффициента вязкости жидкости в двойном электрическом слое равными значению соответствующих характеристик раствора, мы допускаем также некоторую ошибку, поскольку из-за повышенной концентрации ионов значения е и Т1 в двойном электрическом слое могут быть иными, чем в дисперсионной среде. На диэлектрическую проницаемость может влиять также поле высокого напряжения, возникающее в двойном электрическом слое. Вязкость у поверхности твердой фазы может быть повышена за счет изменения структуры приповерхностного слоя жидкости, вызванного действием молекулярных сил. На существенное повышение вязкости [c.201]

    Частицы золя могут приобретать дипольные моменты, противоположно направленные внешнему электрическому полю вследствие деформации двойного-электрического слоя в этом поле. Очевидно, при этом центры тяжести положительных и отрицательных зарядов частицы смещаются относительно друг друга, т. е. частицы поляризуются, что приводит к возрастанию диэлектрической проницаемости. Подобный эффект характерен для всех коллоидных систем и раствО ров высокомолекулярных электролитов. [c.222]

    Другим примером систем, в которых сольватация, по-видимо-му, оказывает существенное влияние на устойчивость, могут служить дисперсные системы с неполярной углеводородной средой, играющие важную роль при производстве и применении нефтепродуктов. Такие системы, например, растворы поверхностно-активных веществ и высокодисперсные взвеси в углеводородах подробно изучены Г. И. Фуксом и его сотр. Оказалось, что устойчивость этих систем зависит от структуры молекул углеводорода и ее соответствия структуре молекул частиц дисперсной фазы, а. также от диэлектрической проницаемости среды и от наличия следов веществ с полярными и дифильными молекулами. Впрочем, для этих систем, как показал Овербек, нельзя пренебрегать двойным электрическим слоем и электростатическими взаимодействиями.,  [c.282]

    Некоторые исследователи установили, что у органозолей с достаточно большой диэлектрической проницаемостью среды обнаруживаются явления электрофореза и существует известная корреляция между электрофоретической подвижностью частиц и устойчивостью этих систем. Таким образом, в органозолях, так же, как и в гидрозолях, коллоидные частицы могут нести двойной электрический слой и обладать -потенциалом. Установлено также, что во многих случаях для органозолей справедливы закономерности, которым подчиняются и гидрозоли. К ним приложимо правило Шульце—Гарди, при их коагуляции наблюдаются явления аддитивности и антагонизма при действии ионов и т. д. Таким образом, есть все основания считать, что к золям с неводной дисперсионной средой с известными коррективами приложима физическая теория коагуляции. [c.306]

    Понятно, что в связи с меньшей диэлектрической проницаемостью среды и, следовательно, меньшей диссоциацией молекул стабилизующего электролита заряд частиц органозолей обычно невелик. Однако в связи с малой емкостью двойного электрического слоя на частицах органозоля этот слой весьма диффу-зен и обладает большой толщиной, вследствие чего для возникновения электростатических сил отталкивания достаточны даже малые заряды. В общем, органозоли гораздо менее устойчивы, чем гидрозоли. [c.306]

    Устойчивость эмульсий типа в/м, стабилизованных мылами с поливалентным катионом, ранее объяснялась главным образом ка- личием на поверхности капелек эмульсии структурно-механического барьера. Объяснение же устойчивости эмульсий типа в/м существованием на межфазной поверхности двойного электрического слоя на первый взгляд кажется невозможным вследствие малой диэлектрической проницаемости дисперсионной среды. Однако, как уже указывалось (гл. IX, разд. II), в последние годы было показано, что даже в неполярных средах может происходить некоторая диссоциация молекул эмульгатора. Соли поливалентных металлов и органических кислот в углеводородных средах обычно имеют константы диссоциации порядка 10 . Следовательно, если, на- пример, концентрация такой соли в бензоле равна 10 ммоль/л, то концентрация ионов в растворе будет иметь значение порядка 10 ° н. При таких условиях двойной электрический слой будет, конечно, очень диффузным расчеты показывают, что его толщина должна составлять несколько микрометров. Отсюда емкость двойного слоя в неполярной жидкости должна быть весьма невелика и нужен очень небольшой заряд для того, чтобы обусловить значительный поверхностный потенциал. Таким образом, электростатические силы отталкивания могут играть существенную роль и в устойчивости обратных эмульсий, особенно не очень концентрированных. [c.374]


    На рис. 52 приведено изменение отношения диэлектрической проницаемости к вязкости в зависимости от напряженности поля по данным Грэма и Бутса (вязкость дана в пуазах). По этим данным отношение 01ц резко падает с увеличением напряженности поля, отвечающей существующим условиям в двойном электрическом слое. На рис. 53 отношение Ь/т] представлено как функция 11)1 при различных концентрациях раствора. Из этого графика можно видеть, что с возрастанием концентрации электролита отношение 0 г быстро падает. [c.91]

    Подводя итоги имеющимся к настоящему времени данным в литературе о значении диэлектрической проницаемости в электрокинетических уравнениях, можно сказать, что вопрос не доведен до окончательного решения, и мы не имеем достаточно определенных данных для суждения о величине диэлектрической проницаемости жидкости в системе тонких капилляров. Положение усложняется тем, что подстановка какого-то иного значения О вместо обычного для свободной жидкости, например для воды величины 7 вместо 81, как характеризующей двойной электрический слой, не дает возможности внести поправку на постепенно уменьшающееся значение -потенциала с уменьшением радиуса пор, Поскольку область проявления электрокинетических эффектов относится к относительно большим разбавлениям растворов электролитов граница смещения жидкости по отношению к твердому телу находится за пределами гельмгольцевской части двойного слоя, то можно полагать, что значительные изменения величины диэлектрической проницаемости приходятся на молекулярный конденсатор в пристенном слое. Поэтому введение диэлектрической проницаемости отвечающей свободной жидкости, в уравнения электрокинетики в настоящее время имеет основания. [c.93]

    Качественное объяснение десорбции органического вещества при больших <7 состоит в том, что в заряженный конденсатор — двойной электрический слой — втягивается диэлектрик, обладающий более высокой диэлектрической проницаемостью, т.е. вода. Как видно из рис. 22, десорбция бутилового спирта (т. е. слияние а, -кривых) наблюдается при потенциалах, не одинаково удаленных от п. н. з. в катодную и анодную стороны. Это объясняется взаимодействием диполя органического вещества с электрическим полем двойного слоя. Действительно, при смещении потенциала в положительную сторону диполь н-С НвОН отталкивается от поверхности, к которой он обращен своим положительным концом. Поэтому десорбция наблюдается уже при относительно небольшом удалении от п. н. з. При сдвиге потенциала в отрицательную сторону, наоборот, притяжение между положительным концом диполя и отрицательно заряженной поверхностью затрудняет выталкивание молекул бутилового спирта из двойного слоя. Можно показать, что эффект вытеснения диэлектрика с меньшей диэлектрической постоянной пропорционален ф , а электростатическое взаимодействие диполя с поверхностью от потенциала зависит линейно. Поэтому в конце концов превалирует первый эффект. [c.45]

    Толщина диффузной части двойного электрического слоя зависит от концентрации электролита, температуры, диэлектрической проницаемости растворителя  [c.237]

    Электрические методы довольно широко применяют для получения данных о строении двойного электрического слоя и о наличии граничной фазы на основе исследования электроповерхностных аномальных свойств жидкостей (электропроводности, диэлектрических потерь и проницаемости, электрокинетических явлений и т.п.). [c.38]

    Под воздействием постоянной ЭДС и тока источника катодной защиты происходят сложные изменения как в грунте, так и в материале электродов создается двойной электрический слой, изменяются магнитные и диэлектрические проницаемости, связывающие компоненты векторов проводимости и напряженности электромагнитного поля, изменяются магнитные моменты электродов и грунта, изменяется разность количества движения на границе раздела фаз сооружение—грунт, анодное заземление— грунт. [c.105]

    Отличие значений диэлектрической проницаемости и вязкости в двойном электрическом слое жидкости от значений этих характеристик в объеме дисперсионной среды может приводить не только к получению неточных абсолютных [c.202]

    На рис. 27 представлена зависимость скорости растворения стали в присутствии ингибитора ГМУ и БА-6 от диэлектрической проницаемости растворителя, Видно, что с уменьшением последней скорость растворения снижается. Это объясняется тем, что молекулы органического растворителя с меньшей диэлектрической проницаемостью втягиваются в двойной электрический слой и вытесняют с поверхности металла молекулы воды (или ионы ОН ). Это, в свою очередь, способствует усилению адсорбции ингибитора и в итоге — снижению скорости растворения железа. [c.57]

    С увеличением размера пор е-пот.енциал сначала увеличивается, а затем, достигнув максимума, уменьшается. Рост -по-тенциала с увеличением размера пор в некотором диапазоне объясняется количественным изменением таких параметров, как вязкость, диэлектрическая проницаемость и электрическая проводимость. Некоторые исследователи считают, что с уменьшением размера пор ниже определенных пределов вязкость увеличивается, однако этот вопрос до конца еще не решен. Диэлектрическая проницаемость, по данным ряда исследователей, в двойном слое намного меньше диэлектрической ироницаемостп жидкости в свободном состоянии. Значения е, полученные, например, для воды в двойном слое, находятся в пределах 2—8. Пока не достигнуто определенной ясности в этом вопросе, нет основания исключать влияние е на увеличение е-пот.енциала с увеличением размера пор до определенных значений. Наконец, последняя величина, которая может вызвать изменение -потенциала от размера пор,— это электрическая проводимость. Электрическая проводимость раствора в порах отличается от ее значения для свободной жидкости. При соизмеримости в поре свободного пространства с толщиной двойного электрического слоя электрическая [c.114]

    Это уравиенне после двойного интегрирования позволяет получить соотношение, выражающее закон изменения поверхностного потенциала от расстояния в диффузной части двойного электрического слоя и от свойств раствора. Чтобы в полной мере представлять возможности соотнонюння (П. 87), лехсащего в основе теории двойного электрического слоя, необходимо напомнить основные допущения и предположения, сделанные Гун и Чепменом при его выводе двойной электрический слой является плоским, диэлектрическая проницаемость не зависит от расстояния х, ноны представляют собой точечные заряды (т. е. не имеют объема), при переводе противоионов из объема раствора в двойной электрический слой совершается работа только против электростатических сил. [c.56]

    Адсорбируясь поверхностью металла, молекулы или ионы поверхностно активных веществ внедряются между обкладками двойного электрического слоя и оттесняют из него катионы, как бы раздвигая последний, увеличивая его толщину и уменьшая диэлектрическую проницаемость (рис. 60). Влиянию псверхностно активных веществ на структуру двойного слоя, кинетику [c.101]

    С современной точки зрения заряд на коллоидных частицах лиозолей, проявляющийся при электрофорезе, обусловлен наличием на их поверхности двойного электрического слоя из ионов, возникающего либо в результате избирательной адсорбции одного из ионов электролита, находящегося в растворе, либо за счет ионизации поверхностных молекул веществ. Правильность такой точки зрения подтверждают опыты, показавшие, что эле строкине-тические явления не наблюдаются или почти не наблюдаются в жидких средах с очень малой диэлектрической проницаемостью, в которых не происходит заметной диссоциации электролитов. К таким жидкостям относятся хлороформ, петролейный эфир, сероуглерод. В то же время электрокинетические явления наблюдаются в нитробензоле в таких слабо полярных жидкостях, как ацетон, этиловый и метиловый спирты, и в особенности — в воде. [c.171]

    Следующая величина в формуле Гельмгольца—Смолуховского, которая привлекла к себе внимание исследователей в отношении сохранения постоянства своего значения для системы тонких капилляров, была диэлектрическая проницаемость. Все исследователи пользуются при своих вычислениях величиной для чистого растворителя, и в частности для воды и водных растворов, равной 81. Однако ряд авторов, например Гуггенгейм, Горт-нер, Райдил, указывает на то, что величина диэлектрической проницаемости на границе раздела фаз в двойном электрическом слое должна быть гораздо меньше. Поэтому для системы тонких капилляров нужно пользоваться не диэлектрической проницаемостью свободной жидкости, а той величиной, которая в действительности должна быть при имеющихся соотношениях между толщиной двойного слоя и сечением капилляров. Поскольку диэлектрическая проницаемость жидкости входит в знаменатель [c.89]

    Уравнения (12), (13) и (14) дают лишь общее представление об электропроводности коллоидов необходимо, как это ранее показано, учитывать дополнительное влияние ряда величин диэлектрической проницаемости и вязкости жидкости, потенциала к толщины двойного слоя, заряда и радиуса частиц. Тем не менее прямое измерение электропроводности позволяет судить о заряде мицеллы, количестве всех противоинов и, таким образом, о структуре двойного электрического слоя. [c.92]

    Рассмотренные теории строения двойного электрического слоя впоследствии были модифицированы многими исследователями (Фрумкнн, Бокрис, Эршлер и др.). Одно из направлений модификации состояло в учете эффекта дискретности специфически адсорбированных ионов, который проявляется при малых заполнениях поверхности электрода. В других работах принималась во внимание зависимость диэлектрической проницаемости среды, в которой образуется двойной электрический слой, от напряженности электрического поля и природы ионов в растворе. В некоторых модификациях учитывалась конечность объема, занимаемого ионами в двойном слое. Несмотря на большое число работ в этой области, еще не достигнуто полного понимания структуры двойного слоя и сил, действующих на ионы при протекании электрохимических реакций. [c.130]

    Пока толщина жидкой прослойки или пленки остается больше суммарной толщины граничных слоев с особой структурой, влияние лоследних проявляется только через соответствующие изменения электростатической и молекулярной составляющих расклинивающего давления. В самом деле, изменение растворяющей способности граничных слоев жидкости и их диэлектрической проницаемости может изменить распределение ионов в двойном электрическом слое, как в его плотной части, так и диффузной [70, 143]. Структурные изменения граничных слоев вызовут и соответствующие изменения частотной зависимости диэлектрической проницаемости е ( ) и приведут к ее анизотропии, что может повлиять на величину дисперсионных сил. [c.224]

    Выше поляризуемость частиц и молекул фетурирует как некоторое заданное свойство. В молекулярной и коллоидной физике оно подлежит определению исходя из геометрических, электронных и других свойств молекул и частиц. В случае коллоидных частиц считаются известными электрические характеристики дисперсного материала и дисперсионной среды — их диэлектрическая проницаемость, электрическая проводимость, параметры двойного слоя на частицах, подвижности ионов и др. В общем случае нахождение поляризуемости частиц представляет собой сложную задачу. Достаточно отметить, что формула для поляризуемости частиц с двойным электрическим слоем была получена примерно через сто лет после вывода формулы для поляризуемости диэлектрической частицы. Наиболее важные уравнения для определения поляризуемости частиц приводятся ниже без вывода. [c.651]


Смотреть страницы где упоминается термин Двойной электрический слой диэлектрическая проницаемость: [c.245]    [c.46]    [c.173]    [c.175]    [c.181]    [c.175]    [c.106]   
Теоретическая электрохимия (1959) -- [ c.368 ]

Теоретическая электрохимия Издание 3 (1970) -- [ c.368 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Диэлектрическая проницаемость

Диэлектрическая проницаемость и двойной слой



© 2025 chem21.info Реклама на сайте