Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Синтез и катализ в основной химической промышленности

    Каталитические процессы широко распространены в природе и эффективно используются в различных отраслях промышленности, иауки и техники. Так, в химической промышленности посредством гетерогенных каталитических процессов получают десятки миллионов тонн аммиака из азота воздуха и водорода, азотной кислоты путем окисления аммиака, триоксида серы окислением 50г воздухом и др. В нефтехимической промышленности более половины добываемой нефти посредством каталитических процессов крекинга, рифор-минга и т. п. перерабатывается в более ценные продукты — высококачественное моторное топливо, различного вида мономеры для получения полимерных волокон и пластмасс. К многотоннажным каталитическим процессам относятся процессы получения водорода путем конверсии диоксида углерода и метана, синтез спиртов, формальдегида и многие другие. Можно утверждать, что для любой реакции может быть создан катализатор. Теория катализа должна раскрывать закономерности элементарного каталитического акта, зависимость каталитической активности от строения и свойств катализатора и реагирующих молекул и тем самым создать необходимые предпосылки для предсказания строения и свойств катализатора для конкретной реакции, указать пути его получения. К описанию скорости каталитического процесса можно подходить, используя основные положения формальной кинетики и метод переходного состояния. При этом целесообразно сперва выделить общие закономерности катализа, присущие всем видам каталитических процессов, а затем рассмотреть некоторые специфические особенности отдельных групп каталитических процессов. [c.617]


    Паскаль П. Синтез и катализ в основной химической промышленности. Производство серной кислоты, соляной кислоты и хлора. Перев. со 2-го франц. изд., под ред. проф. П. М. Лукьянова. М., ГОНТИ, Гл. ред. хим. лит., 1938. 240 с. 3000 экз. 5 р. 25 к., пер. 1 р. 50 к. [c.282]

    В предлагаемом читателю четвертом издании учебника по химии и технологии основного органического и нефтехимического синтеза сохранена теперь уже принятая в большинстве вузов систематизация материала по основным химическим процессам данной отрасли промышленности. Это позволяет в необходимом единстве и без повторений изложить теоретические основы каждого процесса (его химию, термодинамику, механизм, кинетику и катализ) и на этой базе обосновать выбор условий синтеза и типа реакторов, обеспечивающие высокую производительность и селективность. Технологические схемы приводятся в упрощенном, принципиальном виде, обычно в приложении к технологии одного из важнейших продуктов, получаемых при помощи данного процесса. При этом дается обзор альтернативных путей производства основных продуктов и их технико-экономическое сравнение. По убеждению автора, учитывая очень большое число получаемых в данной отрасли продуктов, только такой способ изложения материала будет способствовать глубокому пониманию студентами химии и технологии основного органического и нефтехимического синтеза. [c.7]

    СИНТЕЗ И КАТАЛИЗ В ОСНОВНОЙ ХИМИЧЕСКОЙ ПРОМЫШЛЕННОСТИ [c.1]

    Основным научным центром предприятий химической промышленности являются главные илп центральные лаборатории ПО (предприятия). ЦЛ, выполняющие научные исследования, включают ряд лабораторий аналитическую, физическую, физико-химическую, физнко-механнческую катализа и катализаторов, антикоррозионных покрытий очистки отходящих газов, паров, сточных вод лаборатории синтезов пилотных и опытных установок, испытательных стендов и др. Помимо указанных лабораторий в состав ЦЛ вк.лючаются группа или лаборатория экономических исследований, отдел (группа) технического обслуживания. Для ускорения процесса исследований создаются комплексные бригады по отдельным темам. После завершения темы тематическая бригада расформировывается или, если это целесообразно, получает другую тему, исходя из характера темы и квалификации исполнителей. При необходимости темы разрабатываются с участием научных институтов, кафедр вузов. [c.50]

    Многие химические процессы, применяемые в промышленности, и главным образом в основном химическом синтезе, основаны на реакциях твердой фазы с газом. К таким процессам относятся, например, получение металлов восстановлением газами, обжиг сульфидных руд, получение основных полупродуктов неорганического синтеза — аммиака, серной кислоты и многих органических соединений методами гетерогенного катализа, а также очистка веществ и выращивание монокристаллов (полупроводниковая промышленность). Очень важно здесь то, что в таких гетерогенных системах концентрация дефектов зависит не только от температуры, но и от равновесия между соответствующими компонентами твердой и газовой фаз. Так, например , состав решетки NiO меняется при увеличении парциального давления кислорода, причем в результате окислительно-восстановительной реакции увеличивается количество ионов О - в решетке и одновременно образуется эквивалентное количество ионов Ni +. В соответствии с требованиями об электронейтральности системы в целом, в решетке появляются катионные вакансии  [c.435]


    Катализаторы в синтетической химии. Еще в XIX в. было установлено, что переходные металлы, например, никель, палладий, катализируют реакцию гидрирования органических веществ, причем сами не претерпевают изменений. С тех пор металлы, оксиды и другие соединения играют важную роль в промышленном химическом синтезе как гетерогенные катализаторы, Однако механизм их действия до сих пор недостаточно ясен, и при выборе катализатора большей частью руководствуются опытом. Для различных реакций известно множество типов гомогенных и гетерогенных катализаторов, которые можно разделить в зависимости от характера катализируемых ими реакций. Как гомогенный, так и гетерогенный катализ, вероятно, протекает через следующие три основные стадии  [c.285]

    Металлические материалы широко применяют в аппарато- и машиностроении, катализе, электротехнике, радио- и электронной промышленности. Действительно, чтобы осуществить любой процесс, например химико-технологический, необходимо располагать соответствующей аппаратурой. Использование представлений макрокинетики, теории химических реакторов, а также методов математического и физического моделирования в принципе позволяет найти оптимальную для данного процесса конструкцию и размеры аппарата. Но тогда возникает вопрос, из каких материалов следует делать эту аппаратуру, чтобы она была способна противостоять разнообразным агрессивным воздействиям, в том числе химическим, механическим, термическим, электрическим, а в ряде случаев также радиационным и биологическим. Выбор конструкционных материалов осложняется, когда перечисленные воздействия сопутствуют друг другу. Кроме того, в последнее время требования к материалам, используемым только в химической технологии, повысились по двум причинам. Во-первых, значительно шире стали применять экстремальные воздействия, такие, как сверхвысокие и сверхнизкие температуры и давления, ударные и взрывные волны, ионизирующие излучения, биологические ферменты. Во-вторых, переход к аппаратам большой единичной мощности по производству основных химических продуктов создает исключительно сложные проблемы в изготовлении, транспортировке, монтаже и эксплуатации подобных установок. Например, на современном химическом предприятии можно видеть контактные печи для производства серной кислоты диаметром 5 м, содержащие до 5000 различных труб, реакторы синтеза аммиака и ректификационные колонны высотой более 60 м. Сочетание механических свойств, таких, как прочность, вязкость, пластичность, упругость и твердость, с технологическими свойствами (возможность использования приемов ковки, сварки, обработки режущими инструментами) делает металлические материалы незаменимыми для построения химических реакторов самой разнообразной формы и размеров. [c.135]

    Гетерогенный катализ — один из основных методов химической технологии. Значительная часть известных в настоящее время гетерогенных каталитических процессов приходится на долю промышленности органич.еского синтеза. Осуществляемые в-промышленности газофазные гетерогенные каталитические процессы характеризуются рядом признаков, совокупность которых определяет разнообразие вариантов реакционной аппаратуры. [c.395]

    Катализ применяется при получении важнейших неорганиче ских продуктов основной химической промышленности водорода аммиака, серной и азотной кислот. Особенно велико и разнооб разно применение катализа в технологии органических веществ прежде всего в органическом синтезе — в процессах окисления гидрирования, дегидрирования, гидратации, дегидратации и дру гих. При помощи катализаторов получают основные полупродукты для синтеза высокополимеров синтетического каучука (бутадиен стирол, изобутилен), пластических масс (метанол, формальдегид фталевый ангидрид), а также полупродукты для синтеза красите лей, ядохимикатов и других химических продуктов. Непосредст венное получение высокомолекулярных соединений полимериза цией и поликонденсацией мономеров также осуществляется с уча стием катализаторов. [c.230]

    При рассмотрении современных каталитических производств экономические секреты фирм не раскрываются. Следует также иметь в виду, что для синтеза большинства химических продуктов существует несколько конкурентоспособных процессов. Основной упор делается на промышленную практику, а не на теорию, кинетику и механизмы реакций, так как по этим важным аспектам катализа уже имеются превосходные обзоры. [c.5]

    На основе исследований С. В. Лебедева по синтезу дивинила из спирта в Советском Союзе впервые в мире была создана крупная промышленность синтетического каучука. Б. В. Бызовым был разработан метод получения синтетического каучука из нефти. А. Е. Фаворский и его сотрудники заложили основы химии ацетиленовых углеводородов, в которой широко представлены различные виды каталитических превращений. Г. С. Петровым открыт и внедрен в промышленность метод окисления углеводородов в присутствии растворимых солей металлов, который в настоящее время приобретает все большее практическое значение. Н. Д. Зелинским, Б. Л. Молдавским, Б. А. Казанским и их сотрудниками открыта реакция каталитической ароматизации углеводородов алицикличе-ского и жирного рядов, которая в настоящее время является одним из основных методов химической переработки нефти. Приведенными примерами далеко не исчерпываются работы советских ученых в области катализа и его практического применения. [c.799]


    Рассчитана на научных и инженерно-технических работников нефтехимической и нефтеперерабатывающей промышленности и работников проектных организаций этих отраслей промышленности. Она может быть использована в качестве пособия студентами и аспирантами по специальностям технология основного органического синтеза, технология нефтепереработки и нефтехимического синтеза, теория химических реакторов, кинетика и катализ, процессы и аппараты химической технологии и др. [c.2]

    Книга рассчитана на научных работников, занимающихся проблемами основного органического синтеза, гомогенного и гетерогенного катализа, и на инженерно-технических работников предприятий химической и нефтехимической промышленности. Она будет также полезна преподавателям, аспирантам и студентам старших курсов химических и нефтехимических вузов. [c.199]

    Основой математического моделирования промышленных процессов гетерогенного катализа является математическое описание гетерогенного каталитического процесса на отдельном зерне катализатора. Анализ процессов тепло- и массопереноса в единичном зерне катализатора важен еще и потому, что позволяет наметить пути выбора или синтеза оптимальных промышленных катализаторов, поскольку от интенсивности процесса переноса в зерне катализатора зависит не только удельная каталитическая активность катализатора, но и такая важная характеристика катализатора, как избирательность. Объемная активность катализатора — функция удельной каталитической активности. активной поверхности и, кроме того, средней скорости внутреннего массопереноса. Если процесс химических превращений на катализаторе складывается из последовательных реакций, а полезный продукт промежуточный, то уменьшение скорости внутреннего массопереноса всегда приводит к снижению избирательности. В том случае, когда выход полезного продукта определяется интенсивностью побочной реакции, избирательность катализатора зависит как от соотношения между константами и порядками основной и побочной реакций, так и от скорости массопереноса. Интенсивность процесса переноса теплоты в катализаторе может существенно влиять на его промышленную эффективность. Для катализаторов, используемых для проведения простых экзотермических реакций, выгодна малая величина эффективной теплопроводности, так как перегрев увеличивает скорость процесса. Простые эндотермические реакции и сложные реакции, для которых энергия активации основной реакции меньше энергии активации побочных реакций, целесообразно проводить на катализаторах с увеличенной эффективной теплопроводностью. Таким образом, качественный и количественный анализ процесса связанного тепло- и массопереноса в единичном зерне катализатора является не только основой расчета промышленного процесса, но и служит необходимым условием выбора оптимального катализатора. [c.67]

    Книга рассчитана иа научных работников, зани.мающихся химией гомогенного катализа, инженеров и экономистов промышленности основного органического синтеза она также может быть полезной аспирантам и студентам химических и химико-технологических высших учебных заведений. [c.4]

    Внедрение гетерогенного катализа в органический синтез знаменует начало нового периода в истории органической химии. Многостадийные процессы, характерные для препаративной классической химии, гетерогенный катализ заменил прямыми процессами. Это очень упростило техническое оформление синтезов и обеспечило высокие экономические эффекты химического производства. Могучее посредничество твердых катализаторов проявилось ярче всего в синтезах на основе углеводородов. Гетерогенный катализ как бы воскресил мертвое царство содержащихся в нефти парафиновых и алициклических насыщенных углеводородов, превратив его в доступный источник сырья для органического синтеза. В самом деле, еще в 1920—1930 гг. химическая промышленность для производства анилиновых красителей и ограниченного ассортимента продуктов малой химии использовала в качестве основного [c.145]

    В книге изложены основные положения по теории и практике типовых процессов многотоннажной технологии органических веществ и нефтепереработки, даны научные основы радикально-цепных, гомогенных и гетерогенных каталитических реакций. Рассмотрена характеристика химических процессов, реакторов и растворителей, применяемых в научных и промышленных синтезах, а также приведен термодинамический и кинетический анализ простых и сложных по стехиометрии реакций. Большое внимание уделено механизмам химических реакций, элементарным реакциям, реакционной способности и активации реагентов, гомогеннов у и гетерогенному катализу. [c.4]

    Теоретические исследования гетерогенного кислотного катализа получили широкое развитие в связи с большим практическим значением кислотных катализаторов в химической и нефтяной промышленности. Вместе с тем, незаслуженно мало внимания уделялось изучению механизма действия твердых оснований как катализаторов. До последнего времени изучались в основном микрогетерогенные основные катализаторы, которые, как известно, широко распространены в ферментативных процессах. Тапомним, что на микрогетерогенных катализаторах Бредиг впервые осуществил асимметрический синтез [1]. Большое значение для понимания механизма ферментативного катализа основаниями имеют работы Лангенбека [2]. Изучалось также каталитическое действие основных смол — анионообменников в реакциях полимеризации, конденсации и др. [c.273]

    В предыдущих главах были рассмотрены, хотуТ к далеко не в полной мере, успехи катализа, достигнутые на различных ступенях его развития. Как видно, эти успехи огромны, и не будет преувеличением утверждать, что они в основном теперь определяют общие успехи химии все важнейшие достижения химической технологии связаны с промышленным, в особенности гетерогенным, катализом. Именно гетерогенный катализ позволил решить такие задачи, которые были не под силу классическим методам синтеза, и в первую очередь задачи, связанные с прямым превращением предельных нефтяных углеводородов в непредельные углеводородные мономеры, в спирты, альдегиды, кетоны и кислоты, в различные другие функциональные производные, в карбо- и гетероциклические соединения.,  [c.112]

    Успехи органического синтеза в области металлоорганических соединений магния, цинка, лития и натрия относятся пока в основном к практике лабораторной работы. Промышленное применение металлоорганических соединений разработано значительно меньше. Задача внедрения в промышленность тех химических продуктов, которые до сего дня были получены лишь в стенах лабораторий, является первоочередной. Это вытекает из того, что сложные органические соединения не всегда можно получить при помощи катализа или другими известными в промышленной технологии методами. Разработка про-]иышленного ыеталлоорганического синтеза является актуальной проблемой, требующей не только и не столько технологического, сколько научного решения. [c.219]


Библиография для Синтез и катализ в основной химической промышленности: [c.449]    [c.413]   
Смотреть страницы где упоминается термин Синтез и катализ в основной химической промышленности: [c.15]    [c.274]    [c.285]    [c.146]    [c.177]    [c.338]    [c.161]    [c.13]    [c.13]   
Химическая литература Библиографический справочник (1953) -- [ c.282 ]




ПОИСК





Смотрите так же термины и статьи:

Катализ в промышленности

Промышленный синтез



© 2025 chem21.info Реклама на сайте