Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Титан под напряжением

    В, но из-за наличия перенапряжения и сопротивления рабочее напряжение между двумя электродами поддерживают около 2 В. Электроды обычно изготовляют из нержавеющей стали (анод покрывают никелем для уменьшения перенапряжения) и отделяют один от другого асбестовой диафрагмой. Часто используют биполярные электроды, одна сторона которых работает как анод, а другая - как катод. Для устранения газонаполнения электролита используют перфорированные электроды. В хлорном производстве применяют графитовые электроды, а при горизонтальном расположении электродов - ртутный катод. В качестве материала анода, находящегося особенно в тяжелых эксплуатационных условиях, в последние годы успешно применяют титан, покрытый тонким слоем оксидов рутения. [c.78]


    Наряду с положительными свойствами гальванические покрытия имеют недостатки наводороживание основы при нанесении покрытия наличие водорода в изделии вызывает водородную хрупкость, снижающую как длительную, так и циклическую прочность. Влияние гальванопокрытий хромом, никелем, медью на выносливость стали в воздухе в значительной степени связано с появлением в приповерхностном слое остаточных напряжений растяжения, которые при воздействии коррозионной среды вследствие нарушения сплошности этих покрытий, являющихся катодными по отношению к стали, усиливают анодное растворение стали. Остаточные напряжения растяжения — не единственный фактор, вызывающий снижение усталостной прочности стали. Снижение усталостной прочности стали можно объяснить еще и наводороживанием стали при гальваническом нанесении покрытий. Обычно наводороживание стремятся уменьшить последующей термической обработкой. Покрытие, являясь эффективным барьером, затрудняет процесс обезводороживания изделий. Новым направлением является легирование покрытий титаном, поглощающим водород при последующей термообработке. [c.81]

    Одним из известнейших анодных материалов подобного рода является платинированный титан. О применении платиновых покрытий па так называемых вентильных металлах упоминалось еще в 1913 г. [18]. Титан представляет собой легкий металл (плотность 4,5 г см- ), способный к анодной пассивации. Пассивный слой при действующих напряжениях до 12 В практически может считаться электрически изд- [c.204]

    Титан имеет довольно высокую (1668 °С) температуру плавления и плотность 4,5 г/см . Благодаря высокой удельной прочности и превосходным противокоррозионным свойствам его широко применяют в авиационной технике. В настоящее время его используют также для изготовления оборудования химических производств. В ряду напряжений титан является активным металлом расчетный стандартный потенциал для реакции Т + + 2ё Л составляет —1,63 В . В активном состоянии он может окисляться с переходом в раствор в виде ионов Т " [1]. Металл легко пассивируется в аэрированных водных растворах, включая разбавленные кислоты и щелочи. В пассивном состоянии титан покрыт нестехиометрической оксидной пленкой усредненный состав пленки соответствует ТЮ . Полупроводниковые свойства пассивирующей пленки обусловлены в основном наличием кислородных анионных вакансий и междоузельных ионов Т , которые выполняют функцию доноров электронов и обеспечивают оксиду проводимость /г-типа. Потенциал титана в морской воде близок к потенциалу нержавеющих сталей. Фладе-потенциал имеет довольно отрицательное значение (Ер = —0,05В) [2, 3], что указывает на устойчивую пассивность металла. Нарушение пассивности происходит только под действием крепких кислот и щелочей и сопровождается значительной коррозией. [c.372]


    Титан напряженный 0,001 0,001 мелкая сыпь [c.58]

    Процесс ЭК-Ф может протекать при использовании как растворимых (железо, алюминий и т. д.), так и нерастворимых (платина, графит, титан и др.) анодов [10, 14]. В первом случае при малых напряженностях происходит преимущественное выделение в раствор ионов металла анодов, обеспечивающих коагуляцию загрязнений. Во втором случае коагуляция осуществляется только за счет силового действия электрического поля. [c.61]

    Таким образом, механизм дуги можно представить себе следующим. Из катода в результате высокой степени его разогрева (термоэлектронная эмиссия) или наличия около его поверхности больших напряженностей электрического поля (10 —10 в см — автоэлектронная эмиссия) вырывается поток электронов. Первый случай имеет место для материалов катода с высокой температурой плавления и испарения металла (уголь, графит, вольфрам, молибден), благодаря чему температура на их поверхности может достигать в катодных пятнах значений 2 500—3 000° С и выше, когда начинается заметная термоэлектронная эмиссия. Второй случай соответствует материалам с низкой температурой кипения и испарения (ртуть, титан, медь). В области катодного падения поток электронов разгоняется настолько, что за ее пределами происходит интенсивная ионизация частиц газа в дуговом промежутке, причем здесь, по-видимому, весьма существенна роль ступенчатой ионизации. Образовавшиеся положительные ионы под действием поля направляются к катоду и разогревают его вторичные и первичные электроны направляются через столб дуги в направлении анода. На их пути происходят новые соударения (главным образом термическая ионизация) и образование новых заряженных частиц, что компенсирует их исчезновение в более холодных частях столба путем рекомбинации и диффузии. При попадании на анод отрицательные частицы нейтрализуются, выбивая из него некоторое количество положительных ионов, устремляющихся через столб дуги к катоду. Плазма столба в целом нейтральна, т. е. концентрация положительных и отрицательных частиц одинакова, но из-за того, что подвижность электронов по [c.29]

    Титан и его сплавы находят все большее применение в современном машиностроении, авиастроении, судостроении, турбостроении, производстве вооружения. Особенно ценен титан как материал для частей конструкций, работающих в напряженных условиях, критерием пригодности которого является отношение прочности к весу. Титан используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, его применяют для изготовления деталей судов, самолетов, трубопроводов, котлов высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. [c.88]

    Ест расположить металлы и сплавы, находящиеся в электролите (кислоты, растворы солей, морская вода, влажный грунт и др.). в электрохимический ряд напряжений, начиная от анодного, менее благородного (корродирующего), в направлении к катодному, более благородному (защищенному), то они образуют следующий ряд магний, цинк, алюминий, кадмий, железо и углеродистая сталь, чугун, легированные стали (активные), свинец, олово, латунь, медь, бронза, титан, никель, легированные стали (пассивные), серебро, золото. При помощи этого ряда можно предсказать, какой из двух металлов при их контакте в электролите станет анодом, а какой -катодом. [c.39]

    Гальванические эффекты. Опыт применения титановых сплавов в морских условиях показывает, что их следует использовать только в тех случаях, когда могут быть оправданы затраты, связанные с более высокой по сравнению со сталью и алюминием стоимостью. Морских конструкций, выполненных целиком из титановых сплавов, пока не существует, поэтому титан всегда соседствует в конструкциях с другими металлами. При наличии электрического контакта между титаном и каким-либо металлом происходит увеличение площади поверхности катода, связанного с локальными анодами на этом втором металле. Коррозия таких металлов, как сталь и алюминий, контролируется катодными процессами, поэтому возрастание площади катодной поверхности при образовании гальванической пары с титаном способствует усилению коррозии более анодного элемента пары. Как видно из приведенного электрохимического ряда напряжений, пассивный титан является более катодным металлом по отношению практически ко всем распространенным конструкционным материалам. [c.120]

    Металлическая матрица композиционных материалов выбирается из условий получения максимальной удельной прочности материала, обеспечения связи между упрочняющими элементами и получения необходимых технологических и эксплуатационных свойств. Она обеспечивает передачу нагрузки на волокна, вносит существенный вклад в модуль упругости и снижает чувствительность к концентраторам напряжений. В качестве матриц используются магний, алюминий, титан, кобальт, никель и их сплавы, стали. Преимуществами металлических матриц являются  [c.78]

    При изучении влияния потенциала на технически чистом титане при двух уровнях напряжений показано [124], что при потенциале меньше —250 мВ растрескивание в нейтральных метаноль-иых растворах предотвращается (рис. 37). [c.335]

    Ti—5А1—2,5 Sn отожженный 2 — титан марки RS-140 отожженный 3 — Ti—8 А1—1 Мо— —IV отожженный 4 — Ti—8 А1—I Мо—1 V, тройной отжиг или Ti—6А1—4V отожженный Л-Ti—4 А —3 Мо—I V отожженный стрелочки — пороговое напряжение в указанном на- правлении [c.347]


    Однако во многих случаях такие проблемы больше вызваны обшей коррозией, чем коррозией под напряжением. Металлы, которые, как известно, вызывают субкритический рост трещин в титане и его сплавах, обсуждаются ниже. [c.354]

    Характеристиками области / роста трещины является ярко выраженная зависимость V от коэффициента интенсивности напряжений, высокая кажущаяся энергия активации и отсутствие порогового значения К. Такое поведение наблюдается в растворах, в которых титан полностью не пассивен. Таким образом, не существует трудностей в зарождении трещины, если среда может проникать в уже имеющуюся оксидную пленку. В средах, которые не проникают в оксидную пленку, например жидкая ртуть, для зарождения трещины требуется механический разрыв этой иленки. [c.390]

    Из всех известных в настоящее время материалов титан и его сплавы относятся к числу наиболее стойких к морским средам при обычных температурах. Тонкая окисная пленка, образующаяся на поверхности титановых сплавов, обеспечивает полную защиту металла от коррозии. Разрушение этой пассивной пленки происходит только в специальных условиях. Несмотря на очень высокую общую стойкость титана, все же существует несколько коррозионных проблем, связанных с его использованием в морских условиях [68] питтинговая коррозия, наблюдающаяся в щелевых условиях при недостатке кислорода и температуре морской воды выше 120 °С коррозионное растрескивание высокопрочных титановых сплавов при наличии поверхностных дефектов на металле, к которому приложено растягивающее напряжение коррозионное растрескивание в солях при нагреве выше 260 °С. Эффективными мерами борьбы с этими видами преждевременного разрушения титановых сплавов являются легирование и термообработка. [c.116]

    Титан обладает прекрасной коррозионной стойкостью в условиях погружения как на малых, так и на больщих глубинах. Это один из немногих металлов, характеризующихся одинаковой, практически абсолютной стойкостью на всех глубинах. Склонность некоторых титановых сплавов к коррозионному растрескиванию под напряжением и гальванические эффекты при соединении титана с более анодными или катодными металлами обсуждаются ниже особо. [c.119]

    Тнтан и его сплавы находят все большее применение в совре-мен.чом машиностроении, авиастроении, судостроении, турбостроении, в производстве вооружения. Особенно ценен титан как материал для изготовления частей конструкций, работающих в напряженных условиях. Критерием пригодности таких материалов является отиошение их прочности к весу. Титан и его сплавы используют, когда требуется сочетание минимального веса с высокой прочностью, термической и коррозионной стойкостью. Так, они тнироко применяются для изготовления деталей самолетов, космических аппаратов, ракет, трубопроводов, котлоз высокого давления, для оборудования высокотемпературных процессов в химической и других отраслях промышленности. Одной из наиболее перспективных областей применения титана является судостроение, где решающее значение имеет высокая прочность нри малой плотности и высокая стойкость к коррозии и эрозии в морской воде. Сущестг енное значение имеет использование титана в виде листов для обшивки корпусов судов, литых деталей из титана, выдерживаюнтих длительное пребывание в морской воде, а также для покрытия изнутри смесительных барабанов, предназначенных для перемешивания агрессивных материалов и для других це.тен. В связи с дороговизной листового титана большой практический интерес для судостроительной, химической и других отраслей промышленности представляет применение титана в качестве плакировочного материала для изготовления биметаллических стальных листов. [c.274]

    Очень тонкая пленка платины на титане, например пленка толщиной 0,25 мкм на титановом стержне или диске с медной сердцевиной (для улучшения электропроводности). Напряжение между анодом и катодом около [c.175]

    Химические свойства элементов подгруппы титана характеризуют их металлический характер. В ряду напряжений все три элемента расположены левее водорода. Титан вытесняет водород из кислот-неокислителей (например, НС1)  [c.116]

    Аккумулятор состоит из отрицательного цинкового электро. да и положительного электрода (пористый графит, активированный окислением, платинированный титан). Напряжение ра-зомкнутой цепи - 2,12 В, разрядное напряжение 1,95 1,7 и 1,5 В при 7р соответственно 0,4 0,5 и 1,6 кА/м . [c.210]

    Перспективным способом защиты стальных насосно-компрессорных труб от водородного охрупчивания в условиях сероводородсодержащих нефте- и газопромысловых сред могут стать гальванические титановые покрытия. Как показали исследования [19], после закалки стали Д с 880 °С и отпуска при 400—500 °С образцы с тг[тановым покрытием толщиной 50 мкм, полученным нз расплавленного хлористого электролита, при катодном наводороживании ( к = 100 А/м ) в растворе 0,05н. H2S04+0,01 кг/м= ЗеОг и температуре 25°С не давали трещины при напряжении в условиях изгиба 0,955(Тт за 10 ч, в то время как нетитанированные образцы разрущались за 5—10 мин. Защитные свойства титанового покрытия против водородного охрупчивания авторы объясняют низким коэффициентом диффузии водорода в титане в условиях образования его гидрида, а также обеднением углеродом и повышением пластичности слоя стали, прилегающего к титановому покрытию. [c.137]

    Аналогичные явления наблюдаются и для пассивирования тантала в растворах 10 г/л НгЗО, или 30 г/л СгОз, 1 г/л КгЗОз с гой лишь разницей, что процесс проходит в значительно меньшие промежутки времени, прн меньших силах тока, а предельные напряжения достигают 1000 в. Титан ста новится пассивным на аноде в кислых растворах с кислородным анионом и нейтральным с любЫ М анионом. [c.118]

    Электролиты 1—3 — растворы серпой кислоты В электролите 1 с копцектрапиен серной кислоты 180 г/л прн 80—100 С, /я =0,5 А/дм , /=80 100 В. т=(2- 8) ч анодные плепкн толщиной 0,8—2,5 мкм получаются плотными, блестящими, черного цвета Пленки толщинои 0 — 0.3 мкм, полученные в элект раните 2, с концентрацией серной кислоты 400 -/л прн 18—25 °С, А=1 А/дм /=30 П, т=10 мни. служат как подслой перед напесснием гальванического покрытия иа титан и его сплавы Электролит 3. серная кислота 350—400 г/л, соляная кислота 60—65 г/л используют при 40—50 С, Д=2-=-4 А/ды для получения толстых (20—40 мкм) анодных пленок Плотность тока ступенчато повышают через каждые 2—3 мин ка 0,5 А/дм до напряжения пробоя, после которого устанавливается указанная анодная плотность тока, при которой продолжают электролиз до получения пленки заданной толщины. [c.225]

    Оксидное анодизаци- онное Алюминий и его сплавы медь и ее сплавы магниевые сплавы титан и его сплавы Твердость покрытия на алюминии и его сплавах 28-44 НВ, электроизоляционные покрытия имеют пробивное напряжение до 600 В электрическая прочность возрастает при пропитке покрытия лаками эматале-вые пленки на алюминии и окисные на титане обладают износостойкими свойствами Защита от коррозии, придание электроизоляционных свойств получение светопоглощающей поверхности (медь), защита от задиров при трении (титан), грунты под окраску [c.373]

    Для водных сред, например для защиты подводных стальных конструкций и сооружений в прибрежном шельфе, а также для внутренней защиты резервуаров, тоже применяют в основном цилиндрические аноды, конструкция которых описана в разделе 8.5.1. Кроме таких материалов как графит, магнетит и ферросилид, дополнительно используют еще и аноды из сплавов свинца с серебром, а также платинированный титан, ниобий или тантал. Впрочем, такие аноды обычно выполняют не сплошными, а в форме труб. В конструкциях из сплавов свинца с серебром это делают ввиду большой массы анодов и сравнительно малой плотности анодного тока в случае платинированных вентильных металлов коррозионному износу и без того подвергается только платиновое покрытие. К тому же трубчатая форма позволяет получить большую площадь поверхности и тем самым больший анодный ток. На подсоединения анодоа из сплавов свинца с серебром распространяются рекомендации, приведенные в разделе 8.5.1. Однако можно припаивать кабель и непосредственно к материалу анодов при помощи мягкого припоя, если обеспечена особо эффективная разгрузка кабеля от растягивающих напряжений. В случае титана это невозможно. Такие аноды должны быть снабжены (в отдельных случаях тоже привариваемым) резьбовым соединением, изготовленным также из титана. В этом случае кабель свинчивается с кабельным наконечником, который тоже может быть изготовлен из титана. Все соединение окончательно заливается литой смолой. Иногда и всю трубу заполняют подходящей заливочной массой. Ввиду плохой электропроводности титана целесообразно в случае сравнительно длинных анодов с большой нагрузкой осуществлять подвод тока параллельно на обоих концах. [c.210]

    Весьма стойки и нечувствительны к содержанию воды в N 04 титан и его сплавы, однако под дёйствием напряжений в них [c.289]

    Влияние вида катиона в растворах, содержащих ионы С1 , Вг и 1 , может рассматриваться с учетом их положения в электрохимическом ряду напряжений по отношению к титану. Катионы менее благородных, чем титан, металлов, например натрий, калий, литий и др., не оказывают влияния на КР. Более благородные, чем титан, катионы могут влиять на КР. Как было показано 1102], Кгкр сплава Ti—8 А1—1 Мо—1 V может возрасти при добавках u lz. Следует отметить, что этот эффект сильно зависит от термообработки сплава [103]. [c.323]

    Катастрофическое разрущение емкостей из сплава Ti—6 Al—4 V, заполненных сухим метанолом реактивной чистоты под давлением для корабля Apollo , в процессе их испытания на надежность стимулировало в конце 60-х годов интенсивное проведение работ по исследованию КР титановых сплавов в органических средах. Основная информация в историческом плане и результаты этих исследований приведены в работе [113]. Более поздние работы по ому вопросу обобщены в обзоре [114]. Титан и его сплавы подвергаются межкристаллитному разрущению в некоторых органических растворителях, особенно в растворах метанол — НС1, и в отсутствие напряжения. В некоторых растворах величина /Схкр не лимитируется, поэтому выбор образцов не является критическим для качественной оценки материалов. Например, не имеет значения, будут ли использованы U-образные изгибные образцы или гладкие образцы на растяжение, или образцы с предварительно нанесенной усталостной трещиной. Тем не менее тип образца может повлиять на интерпретацию результатов. [c.332]

    Испытание на КР под напряжением в галоидозамещенных углеводородах было проведено только на сплавах. Растрескивание было зафиксировано в четыреххлористом углероде, хлориде метилена, йодиде метилена, трихлорэтилене, трихлорфторметане, трихлорфторэтане и в октафторциклобутане. Из литературы не следует, что чистый титан чувствителен к КР в этих органических средах. Кроме того, в некоторых случаях для КР необходим надрез или предварительное нанесение усталостной трещины. [c.340]

    Такое предположение основывается на то.м, что максимальные напряжения, возникающие вблизи вершины трещины, будут зависеть от легкости релаксации пластической деформации и протяжеиности ее зоны. В пользу этой гипотезы имеется несколько доказательств. Во-первых, как можно видеть из рис. 38, наклон кривой в области / зависит от термической обработки и уменьшается с ростом предела текучести материала. Во-вторых, из результатов [124] для межкристаллитного характера роста трещин (= область / ) в титане марки СР-50А был получен меньший наклон кривой 0,055 МПа-м / . [c.390]

    Водородное охрупчивание наблюдается в титане и его сплавах. Если при КР происходит взаимодействие того же типа, что и при водородном охрупчивании при малых скоростях деформации, то корреляция чувствительности к КР с составом сплава не особенно хорошая (см. рис. 83). Далее, кинетика роста трещин в зависимостн от температуры и напряжения, по-видимому, различна [43]. Однако процессы были оценены между собой только на примере сплава Т1 — 8Мп очевидно, что необходима дальнейшая работа. [c.398]

    Прямолинейный участок кинетических диаграмм для исследуемых материалов имеет разный наклон, свидетельствующий о разной скорости роста трещины. При одинаковом размахе коэффициента интенсивности напряжений (Д/С =21 МПа м ) наибольшей скоростью роста трещины обладает титан ВТ1 — О, наименьшей — сплав ВТ5 (рис. 47). Промежуточное значение скоростей роста трещины в более прочных сплавах ВТЗ и ВТ14 определяется, вероятно, деформационным распадом метастабильной -фазы с выделением мелкодисперсных фаз [151]. Последние спо- [c.95]

    Установка оборудована системой автоматического регулирования (САР), которая обеспечивает номинальные значения расходов диализата, концентрата, промывного раствора pH концентрата и промывного раствора солесодержанйя диализата и силы тока на аппаратах. Оба электродиализатора состоят из шести мембранных пакетов аноды — листовой титан с платиновым покрытием катоды — листовая нержавеющая сталь. Лучший выход по току (до 80%) достигнут при последовательном включении мембранных пакетов и постоянной плотности тока 1,5-10 з aj M . На электродиализаторе II ступени плотность тока составляла 10 а/см , а напряжение на электродах 700—800 в. Средний расход электроэнергии на единицу объема очищенного раствора около [c.228]

    При электродиализе сернокислых, а также щелочных и нейтральных растворов, содержащих сульфат-, молибдат- и перренат-ионы(25,10и0,42 г/.<г соответственно), Са + (0,05 г1л)иК+г л), рений количественно отделяется от молибдена, кальция и калия [181]. Раствор для отделения помещают в среднюю камеру электродиализатора с катионообменной мембраной у катода и анионообменной у анода (рис. 62). В качестве электродов использован платинированный титан. При напряжении 75 в и плотности [c.184]

    Западногерманская фирма Сименс и Гальске получила во Франции патент на Метод получения алмазоподобного углерода при низких давлениях (491. Способ заключается во введении в горячую реакционную зону соединений углерода, имеющих структуру, полностью или частично соответствующую строению алмазной решетки. В качестве исходного продукта используется, в частности, циклопентан. Его кольцо с пятью атомами углерода составлено почти без напряжений. Кроме циклопентана и циклогексана, пригодны другие соединения углерода, разлагающиеся при высоких температурах на составляющие, в которых цепочки атомов углерода соответствуют решетке алмаза. Для ввода исходного вещества в реакционную зону использовался газ-носитель инертные газы,, водород или газообразные при комнатной температуре углеводороды. Для облегчения образования зародышей алмазоподобной формы углерода в зону реакции добавляют катализаторы — вещества, способные в условиях реакции образовывать карбиды кубической структуры. Это — кремний, титан, элементы [c.56]


Смотреть страницы где упоминается термин Титан под напряжением: [c.195]    [c.421]    [c.278]    [c.85]    [c.137]    [c.81]    [c.85]    [c.235]    [c.483]    [c.203]    [c.243]    [c.206]    [c.357]    [c.101]   
Морская коррозия (1983) -- [ c.123 , c.126 , c.397 , c.400 , c.403 ]




ПОИСК





Смотрите так же термины и статьи:

Коррозия под напряжением титана и его сплавов

Стойкость титана к коррозионному растрескиванию (под напряжением)



© 2025 chem21.info Реклама на сайте