Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы высокомолекулярных веществ,

    Характерной особенностью растворов высокомолекулярных веществ является большое различие размеров молекул растворенного вещества и растворителя. Вследствие этого ряд свойств растворов высокомолекулярных веществ имеет специфические особенности, хотя в общем эти растворы следуют тем же рассмотренным выше термодинамическим закономерностям, что и растворы низкомолекулярных веществ. [c.254]

    Вследствие этих особенностей растворы высокомолекулярных веществ в ряде случаев ведут себя как коллоидные растворы (малая скорость диффузии, высокая вязкость, явление набухания и др.). В соответствии с этим такие растворы считались раньше коллоидными растворами. Однако в противоположность коллоидным растворам они термодинамически устойчивы и поэтому являются истинными молекулярными растворами. Следует отметить, что при растворении в некоторых растворителях высокомолекулярные вещества дают также коллоидные растворы. Так, натуральный каучук в бензоле дает истинный (молекулярный) раствор, а в воде—коллоидный (латекс). Растворы нитрата целлюлозы в ацетоне и растворы желатина в воде являются молекулярными растворами, а растворы нитрата целлюлозы в воде и растворы желатина в спирте—коллоидными растворами. [c.254]


    Во многих случаях теплоты образования растворов высокомолекулярных веществ больше или меньше нуля. Так, при растворении нитрата целлюлозы в циклогексаноне теплота выделяется (Рр<0), а при растворении каучука в бензоле или толуоле теплота поглощается (Qp>0). Характерно, что теплота растворения высокомолекулярных веществ мало зависит от концентрации раствора при расчете на звено цепи она практически одинакова для полимеров разного молекулярного веса. Это значит, что взаимо- [c.254]

    Гидрофобные золн и растворы высокомолекулярных соединений при их образовании почти всегда загрязняются различными примесями чаще всего в системе присутствует исходный электролит загрязняются золи введенным в избытке стабилизатором. Для получения устойчивых коллоидных растворов необходимо удалять из них примеси. Рассмотрим методы очистки золей и растворов высокомолекулярных веществ. [c.291]

    Простейшим методом изучения термодинамических свойств растворов высокомолекулярных веществ является измерение давления пара растворителя. [c.255]

    Для очистки лиофобных коллоидов применяются те же методы, что и для очистки растворов высокомолекулярных веществ. Коллоидные системы часто содерж,ат низкомолекулярные растворимые компоненты, которые по той или иной причине необходимо удалить. Таковыми могут быть, например, электролиты, присутствие которых обычно уменьшает стабильность коллоида, так что полученный коллоид следует от них очищать. Общий принцип отделения коллоида от молекулярно-растворенных веществ основан на большой разнице в размерах между коллоидными частицами и молекулами и на способности последних проникать сквозь очень тонкие поры в мембранах. [c.14]

    Близки к атермальным многие растворы высокомолекулярных веществ в обычных растворителях. В этих растворах молекулы растворенного вещества в сотни и тысячи раз больше молекул растворителя. [c.254]

    Таким образом, растворы высокомолекулярных веществ близки к атермальным. Обращаясь к уравнениям (VII, 54), (VII, 55) и (VII, 56), видим, что термодинамические свойства высокомолекулярных веществ определяются, в первую очередь, энтропийным членом. Так как для этих растворов характерны большие положительные величины энтропии образования раствора, то коэффициенты активности компонентов этих растворов много меньше единицы. [c.255]

    Величины теплот смешения в растворах высокомолекулярных веществ во многих случаях невелики. Это и понятно, так как часто молекулы растворителя близки по размерам и молекулярной природе к звеньям цепей полимеров, поэтому характер и величина взаимодействия между однородными и разнородными молекулами раствора одного и того же порядка. Теплота смешения действительно практически равна нулю в некоторых растворах, например в растворах полнизобутилена (/И2=320 ООО и 90 ООО) в изооктане и гуттаперчи в толуоле. [c.254]


    Как расчет термодинамических величин, отнесенных к молю раствора или компонента, так и развитие статистической теории требуют знания состава раствора, выраженного через мольные (л ,) или мольно-объемные (ср,) доли компонентов. Для расчета этих величин необходимо знать молекулярные веса компонентов, особенно полимера. Эта задача не проста. Для определения молекулярного веса Ма необходимо, как мы знаем, измерить кол-лигативное свойство предельно разбавленного раствора. Вследствие того что в растворах высокомолекулярных веществ имеют место большие отрицательные отклонения от закона Рауля, свойства предельно разбавленных растворов проявляются лишь при малых концентрациях растворенного вещества. Прн этих условиях такие коллигативные свойства, как понижение давления пара или понижение точки затвердевания, используемые для определения молекулярного веса, становятся настолько малыми, что их крайне трудно измерить. Только осмотическое давление таких растворов имеет достаточно точно измеримую величину (например, осмотическое давление 5%-ного раствора каучука в бензоле ( 2=4-19 ) равно 10 мм рт. ст.]. В связи с этим измерение осмотического давления растворов полимеров получило широкое распространение как метод определения молекулярного веса высокомолекулярных веществ в растворе. Точное измерение малых осмотических давлений проводится с помощью специальных, тщательно разработанных методик. [c.258]

    Свойства растворов высокомолекулярных веществ [c.255]

    За рубежом, и прежде всего в США, Японии, Англии, Франции, ФРГ, обратный осмос и ультрафильтрация получили широкое промышленное развитие для обработки воды и водных растворов, очистки сточных вод, очистки и концентрирования растворов высокомолекулярных веществ. В настоящее время в этих странах действует несколько тысяч обратноосмотических и ультрафильтрационных установок производительностью от 1—3 до 17 000 м /сут (например, на одном из металлургических заводов в Японии для очистки сточных вод). В США в 1981 г. должна вступить в строй обратноосмотическая (в сочетании с электродиализом) опреснительная установка производительностью около 38 000 м /сут. С пуском этой установки, а также ряда других (см. главу VI) около половины опресняемой на нашей планете воды будет обрабатываться мембранными методами. [c.8]

    Поскольку теплота образования растворов высокомолекулярных веществ имеет второстепенное значение для определения термодинамических свойств этих растворов, статистическая теория их разрабатывается в основном для крайнего случая атермальных растворов (в которых ДЯр=0) с введением поправок, учитывающих небольшие тепловые эффекты и использующих теорию регулярных растворов. [c.255]

    При более высоких температурах взаимная растворимость растет и может быть достигнуто полное взаимное растворение. Если такой раствор охладить до более низкой температуры, то он разделяется на два слоя (коацервация), имеющие тот же состав, который достигается при длительной изотермической выдержке смеси полимера и растворителя. Это является убедительным доказательством термодинамической равновесности растворов высокомолекулярных веществ. [c.257]

    Следует иметь в виду, что далеко не всегда величина молекулярного веса данного полимера надежно установлена или даже просто измерена. Поэтому свойства растворов высокомолекулярных веществ нередко сопоставляются не с истинными мольными долями, ас весовыми концентрациями или с условными мольными долями х. Последние рассчитываются так, что полимеризация [c.260]

    Тиксотропные превращения обязаны тепловым колебаниям молекула изотермических условиях и представляют собой обратимые переходы гель <=> золь или сту-день<=>раствор высокомолекулярного вещества. Степень дисперсности системы при тиксотропных превращениях не изменяется — коллоидные частицы не коагулируют, разрушенные структуры восстанавливаются в результате столкновения и сближения на расстояния действия межмолекулярных сил взаимодействия частиц дисперсной фазы, находящихся в системе в хаотичном движении. Различают прочностную и вязкостную тиксотропию — соответственно обратимое разрушение сплошного простран- [c.30]

    Приведенная классификация приложима не только к коллоидным системам, но и к системам, представляющим собою растворы высокомолекулярных веществ. [c.28]

    Вязкость коллоидных дисперсий, и в особенности растворов высокомолекулярных веществ, может очень сильно отличаться от вязкости чистой дисперсионной среды. Она может зависеть от скорости течения и заметно меняться во времени (подробнее об этом см. в дополнении 3 в конце книги). [c.73]

    Растворы высокомолекулярных веществ, если они находятся в термодинамически равновесном состоянии, аналогично истинным растворам обладают абсолютной агрегативной устойчивостью. Высокая устойчивость коллоидных растворов ВМС определяется, в основном, двумя факторами — наличием на поверхности частиц двух оболочек электрической и сольватной (гидратной). Поэтому для коагуляции коллоидов высокомолекулярных соединений необходимо не только нейтрализовать заряд коллоидной частицы, но и разрушить жидкостную оболочку. Выделение ВМС из растворов по своему характеру отличается от коагуляции типичных гидрофобных коллоидов. Так. если для гидрофобных золей достаточно незначительных добавок электролитов, чтобы вызвать коагуляцию, то для высокомолекулярных веществ этого недостаточно. Для выделения дисперсной фазы полимеров необходимы высокие (вплоть до насыщенных растворов) концентрации электролитов. Явление выделения в осадок растворенного ВМС под действием большой концентрации электролита получило название высаливания (опыт 110,113). [c.227]


    Теоретическое пояснение. Добавление к гидрофобным золям растворов высокомолекулярных веществ (ВМВ) может привести к повышению или понижению порогов коагуляции золя. [c.202]

    Наконец, характерной особенностью многих золей является неподчинение их зависимостям, выражаемым уравнениями Ньютона и Пуазейля. Для обычных жидкостей объем жидкости, протекшей через капилляр в единицу времени, прямо пропорционален разности давлений р на концах капилляра. Точно так же для обычных жидкостей наблюдается прямая зависимость между углом поворота внутреннего цилиндра и скоростью вращения наружного цилиндра в ротационном приборе типа вискозиметра Ф. Н. Шведова. Для многих же золей, эмульсий и растворов высокомолекулярных веществ такая зависимость отсутствует, а вычисленная по соответствующему уравнению вязкость имеет переменное значение и является функцией градиента скорости. Иными словами, вязкость многих дисперсных систем не является инвариантной характеристикой системы, а зависит от условий ее определения, например от скорости течения жидкости в вискозиметре, от типа и размеров прибора. [c.327]

    Несмотря на то, что растворы высокомолекулярных веществ не являются коллоидными в точном смысле этого слова, описание их свойств, как правило, включают в курс коллоидной химии, поскольку сходство ряда свойств коллоидных растворов и растворов высокомолекулярных веществ позволяет рассматривать многие проблемы одновременно для систем обоих типов. Помимо этого, кроме типичных растворов высокомолекулярных веществ, в которых они существуют в виде больших, но не связанных друг с другом, обычно вытянутых или свернутых в весьма рыхлые клубки молекул, известны растворы полимеров, по существу ничем не отличающиеся от коллоидных систем. Это растворы полимеров в плохих растворителях цепные молекулы в таких растворах свернуты в компактный клубок с явно выраженной поверхностью, на которой могут протекать явления адсорбции. Примером таких систем являются натуральный и синтетические латексы, у которых сравнительно большие полимерные частицы находятся в вод- [c.14]

    Методы электронографии целесообразно сочетать с рентгенографическим анализом. При этом обычно удается получить достаточно сведений о внутренней структуре дисперсной фазы коллоидных систем и растворов высокомолекулярных веществ, а также б изменениях, наступающих в этой структуре в результате нагревания, деформации, набухания и тому подобных воздействий. [c.50]

    Однако осмометрия вполне применима для определения молекулярного веса высокомолекулярных веществ, образующих истинные растворы и не требующих для стабилизации растворов присутствия в них электролитов. Такое определение возможно благодаря тому, что растворы высокомолекулярных веществ могут быть получены достаточно высокой концентрации, как правило, вполне агрегативно устойчивы и обычно хорошо выдерживают операции очистки. [c.68]

    ПРИРОДА И НЕКОТОРЫЕ СВОЙСТВА РАСТВОРОВ ВЫСОКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ [c.416]

    Поэтому растворы высокомолекулярных веществ едва ли правильно относить к коллоидным растворам. [c.416]

    Bee это приводит к выводу о необходимости хотя бы весьма кратко рассмотреть в нашем курсе природу и свойства растворов высокомолекулярных веществ, обратив главное внимание на те системы и те явления, которые ближе всего к коллоидным. Однако прежде чем говорить о растворах высокомолекулярных веществ, кратко остановимся на самих высокомолекулярных веществах и рассмотрим особенности строения их молекул. [c.417]

    Очень часто высокомолекулярные вещества содержат примеси — электролиты, низкомолекулярные органические вещества. Для очистки высокомолекулярных веществ применяют диализ. Техника диализа растворов высокомолекулярных веществ ничем не отличается от диализа типичных коллоидных систем. Если в водном растворе очищаемого продукта присутствуют только электролиты, для удаления их с успехом можно применять электродиализ. Если продукт нерастворим в жидкости, выбранной для диализа, а способен только набухать в ней, то диализ можно заменить простым вымачиванием высокомолекулярного вещества при периодической смене жидкости. [c.424]

    ТЕОРИИ РАСТВОРОВ ВЫСОКОМОЛЕКУЛЯРНЫХ ВЕЩЕСТВ [c.432]

    Лнозолн делят на дисперсионные, ассоциативные и макромоло-кулярные. Дисперсионные получают методами конденсацин (чаще) либо диспергирования, ассоциативные образуются обратимо при ассоциации молекул в растворах (обычно молекул ПАВ), макромолекулярные являются растворами высокомолекулярных веществ. Лиозоли второй и третьей группы образуются самопроизвольно, как и истинные растворы. [c.186]

    Вискозиметрический метод определения молекулярного веса основан на существовании линейной зависимости между удельной вязкостью Т1уд растворов высокомолекулярных веществ и молекулярным весом растворенного вещества. Зависимость между удельной и [c.156]

    Существует класс весьма важных веществ с очень большими молекулами, так называемые высокомолекулярные соединения, или полимеры. Сюда относятся белки, целлюлоза, каучук и ряд синтетических продуктов. Размеры молекул этих веществ в отдельных случаях могут даже превышать размер коллоидных частиц. Возникает вопрос, являются ли растворы этих веществ коллоидными системами. Казалось бы, на этот вопрос следует ответить положительно, так как эти растворы, содержащие гигантские молекулы, обладают многими свойствами, характерными для коллоидных растворов, например, способностью к диализу и малой диффузией. Однако, как показали исследования последних десятилетий, в достаточно разбавленных растворах высокомолекулярные соединения раздроблены до. калекул и, следовательно, эти растворы представляют собою гомогенные системы. Поэтому их нельзя отнести к типичным коллоидным системам. Растворы белков, целлюлозы, каучука и других подобных веществ во избежание путаницы лучше называть не коллоидными растворами, как это было принято раньше, а растворами высокомолекулярных веществ. Это название указывает, что данные системы, во-первых, являются истинными растворами и, во-вторых, что в них содержатся гигантские молекулы. [c.14]

    Наконец, несостоятельность дисперсоидологии особенно ясно выявилась после детального нсследоваия природы растворов полимеров. Согласно Во. Оствальду и другим представителям дисперсоидологии, все коллоидные свойства должны обязательно проявиться у систем, содержащих частицы коллоидных размеров. Однако, как было уже показано, растворы высокомолекулярных веществ, молекулы которых отвечают коллоидным размерам, проявляют только некоторые свойства, типичные для коллоидных систем (оптические, молекулярно-кинетические свойства), в отношении же других свойств они имеют очень мало общего с типичными коллоидными растворами. [c.23]

    Согласно принятой в настоящее время терминологии, гелеобразованнем или желатинированием называют переход коллоидного раствора из свободно-дисперсного состояния (золя) в связнодисперсное (гель). Термином застудневание пользуются для обозначения аналогичного перехода раствора высокомолекулярного вещества в студень. [c.315]

    Растворы высокомолекулярных веществ представляют собой истинные растворы, термодинамически устойчивые и обратимые, не нуждающиеся в стабилизаторе. Частицы, содержащиеся в таких растворах, состоят не из множества малых молекул, как это имеет место у коллоидов, а представляют отдельные молекулы, правда, относительно очень больших размеров. В этом собственно и заключается отличие растворов высокомолекулярных соединений от растворов низкомолекулярных веществ. Тем не менее ряд ученых (Кройт, Бунгенберг де Йонг, И. И. Жуков, Эдельман и др.) относят растворы высокомолекулярных веществ к коллоидным растворам, причем некоторые называют растворенн те в них вещества обратимыми коллоидами (Кройт, Бунгенберг дё йонг), а некоторые — молекулярными коллоидами (И. И. Жуков, Эдельман). Нетрудно видеть, что основные особенности, присущие лиозолям, объясняются в случае растворов высокомолекулярных веществ просто большим размером молекул, приближающимся, а в некоторых случаях даже превосходящим размер коллоидных частиц. [c.416]

    Однако существуют некоторые причины, действительно сближающие растворы высокомолекулярных веществ с коллоидными системами. Так, растворы высокомолекулярных соединений в плохих растворителях содержат молекулы (или агрегаты молекул), свернутые в компактный клубок с явно выраженной межфазной поверхностью. По существу, они представляют отдельную фазу. Такие растворы высокомолекулярных соединений действительно можно отнести к коллоидным системам. Далее, в концентрированных растворах высокомолекулярных веществ обычно возникают достаточно большие ассоциаты макромолекул, существующие неопределенно долго. Эти частицы также можно рассматривать как вторую фазу или, по крайней мере, как зародыши этой фазы. Наконец, растворы высокомолекулярных веществ благодаря большим размерам их молекул обладают, как будет показано ниже, рядом свойств лиозолей, что позволяет рассматривать многие проблемы одновременно и для коллоидных растворов, и для растворов высокомолекулярных веществ. [c.416]

    Фракционирование осаждением проводят из раствора высокомолекулярного вещества, в К9тором содержатся все фракции. Приливая к этому раствору все возрастающие количества нерастворителя, в осадке последовательно получают ряд фракций. Естественно, что молекулярный вес этих фракций будет тем меньше. Чем больше было прилито нерастворителя, так как наиболее низкомолекулярные фракции всегда обладают наибольшей растворимостью, [c.424]

    Еще 20—40 лет тому назад существовали две теории растворов полимеров. Согласно одной из них (мицеллярная теория), развитой Майером и Марком, макро У1олекулы находятся в растворе в виде мицелл, согласно второй — достаточно разбавленные растворы высокомолекулярных веществ содержат отдельные, друг с другом не связанные макромолекулы (молекулярная теория). [c.432]


Смотреть страницы где упоминается термин Растворы высокомолекулярных веществ,: [c.5]    [c.69]    [c.70]    [c.286]    [c.425]   
Курс коллоидной химии (1976) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные вещества

Высокомолекулярные вещества и их растворы Получение и свойства ВМВ

Вязкость коллоидных растворов и растворов высокомолекулярных веществ

Диффузия в растворах высокомолекулярных веществ

Изменение свободной энергии в растворах высокомолекулярных веществ

Изменение теплосодержания и сольвата ия в растворах высокомолекулярных веществ

Изменение теплосодержания и сольватация в растворах высокомолекулярных веществ

Изменение энтропии в растворах высокомолекулярных веществ

Истинные и коллоидные растворы высокомолекулярных веществ

Методы очистки золей и растворов высокомолекулярных веществ

Нарушение устойчивости в растворах высокомолекулярных веществ

Нарушение устойчивости растворов высокомолекулярных веществ (расслоение, высаливание, коацервация)

Некоторые свойства растворов высокомолекулярных веществ

Обнаружение высокомолекулярных веществ в растворе и контроль степени очистки низкомолекулярных органических препаратов

Общая характеристика растворов высокомолекулярных веществ

Получение растворов высокомолекулярных веществ

Природа и некоторые свойства растворов высокомолекулярных веществ

Растворы высокомолекулярных веществ Термодинамическая устойчивость растворов высокомолекулярных веществ

Растворы высокомолекулярных веществ вязкость

Растворы высокомолекулярных веществ диссоциации

Растворы высокомолекулярных веществ застудневание

Растворы высокомолекулярных веществ защитное действие

Растворы высокомолекулярных веществ ионное равновесие

Растворы высокомолекулярных веществ основные особенности

Растворы высокомолекулярных веществ пластичность

Растворы высокомолекулярных веществ получение, очистка

Растворы высокомолекулярных веществ правило

Растворы высокомолекулярных веществ разрушение

Растворы высокомолекулярных веществ степень диссоциации

Растворы высокомолекулярных веществ теория электролитической

Растворы высокомолекулярных веществ термодинамическая

Растворы высокомолекулярных веществ устойчивость

Растворы высокомолекулярных веществ фракционирование

Синерезис н растворы высокомолекулярных веществ

Структурообразование в коллоидных системах и растворах высокомолекулярных веществ

Теории растворов высокомолекулярных веществ

Термодинамическая устойчивость растворов высокомолекулярных веществ

Термодинамические свойства растворов высокомолекулярных веществ



© 2022 chem21.info Реклама на сайте