Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворы высокомолекулярных веществ правило

    Несмотря на то, что растворы высокомолекулярных веществ не являются коллоидными в точном смысле этого слова, описание их свойств, как правило, включают в курс коллоидной химии, поскольку сходство ряда свойств коллоидных растворов и растворов высокомолекулярных веществ позволяет рассматривать многие проблемы одновременно для систем обоих типов. Помимо этого, кроме типичных растворов высокомолекулярных веществ, в которых они существуют в виде больших, но не связанных друг с другом, обычно вытянутых или свернутых в весьма рыхлые клубки молекул, известны растворы полимеров, по существу ничем не отличающиеся от коллоидных систем. Это растворы полимеров в плохих растворителях цепные молекулы в таких растворах свернуты в компактный клубок с явно выраженной поверхностью, на которой могут протекать явления адсорбции. Примером таких систем являются натуральный и синтетические латексы, у которых сравнительно большие полимерные частицы находятся в вод- [c.14]


    Однако осмометрия вполне применима для определения молекулярного веса высокомолекулярных веществ, образующих истинные растворы и не требующих для стабилизации растворов присутствия в них электролитов. Такое определение возможно благодаря тому, что растворы высокомолекулярных веществ могут быть получены достаточно высокой концентрации, как правило, вполне агрегативно устойчивы и обычно хорошо выдерживают операции очистки. [c.68]

    Растворы высокомолекулярных веществ, равно как и лиозоли, в известных условиях теряют свою текучесть, т. е. переходят в студни. Застудневание может происходить спонтанно (самопроизвольно), в результате изменения температуры, при концентрировании раствора или при добавлении к нему не слишком больших количеств электролита. Как правило, под действием этих факторов структурная вязкость системы возрастает, что приводит к превращению жидкости в студень — систему, проявляющую ряд свойств твердого тела. [c.481]

    Наконец, на вязкость растворов высокомолекулярных веществ может влиять введение в раствор небольших количеств некоторых веществ. Из практики, например, известно, что вязкость растворов эфиров целлюлозы при введении все возрастающих количеств спирта сначала падает, а затем возрастает. Подобные же явления наблюдаются л при введении в. эти же растворы воды. При добавлении в растворы эфиров целлюлозы солей алюминия, железа, свинца, кальция, магния и цинка, как правило, вязкость повышается при введении некоторых мыл она уменьшается, [c.464]

    Поскольку осмотические давления высокомолекулярных соединений малы (как правило, они не превышают десятых долей мегапаскаля), при расчете движущей силы процесса ультрафильтрации ими часто можно пренебречь. Поэтому ультрафильтрацию проводят при сравнительно невысоких давлениях (0,2-1,0 МПа). Если же ультрафильтрации подвергают раствор достаточно высокой концентрации или если происходит отложение на мембране задерживаемого вещества, то при расчете движущей силы процесса следует учитывать осмотическое давление раствора высокомолекулярного вещества у поверхности мембраны [см. уравнение (24.3) или (24.3а)]. [c.327]

    Если бы растворы высокомолекулярных веществ представляли собой такие же системы, то, несомненно, они должны были быть отнесены к настоящим коллоидным системам. Действительно, ряд авторов [3, 4] считают, что растворы высокомолекулярных веществ обладают теми признаками коллоидных растворов, которые перечислены выше, и поэтому относят их к коллоидным растворам, являющимся микрогетерогенными и термодинамически неустойчивыми. В качестве основного доказательства микрогетерогенности обычно фигурирует неприменимость правила фаз к процессам растворения и осаждения высокомолекулярных веществ, что в наиболее общей форме было сформулировано в правиле осадков Во. Оствальда. Вторым доводом служит явление старения и, вообще, наличие необратимых процессов (гистерезисные явления при осаждении и растворении). Косвенным доказательством наличия микрогетерогенности раствора высокомолекулярных веществ являются плохая воспроизводимость результатов, получаемых различными авторами при исследовании растворов высокомолекулярных веществ, и зависимость свойств этих растворов от метода их получения. [c.243]


    Большие давления особенно часто приходится применять для фильтрации растворов высокомолекулярных веществ, которые, как правило, фильтруются значительно медленнее золей и истинных растворов. [c.50]

    Начиная с 1900 г. было опубликовано несколько работ по применению правил фаз к растворам высокомолекулярных веществ. Но в этих работах не делалось прямых выводов о термодинамической устойчивости растворов полимеров. [c.56]

    Впервые связь между применимостью правила фаз к растворам высокомолекулярных веществ и их термодинамической устойчивостью отчетливо была сформулирована В. А. Каргиным. В. А. Каргин на примере ряда растворов высокомолекулярных веществ показал, что эти растворы являются обратимыми, и сделал отсюда вывод, что растворы высокополимеров являются не мицеллярными, а молекулярными растворами. [c.56]

    Из более ранних работ по применению правила фаз к растворам высокомолекулярных веществ следует указать две работы в одной из них было показано, что системы яичный [c.56]

    Важная проблема растворимости в основе решается для полимеров так же, как и для обычных растворов. Как правило, линейные аморфные полимеры растворимы лучше кристаллических. Большая величина молекул высокомолекулярных веществ и гибкость их цепей, а также малая скорость диффузии приводят к тому, что процесс растворения протекает своеобразно. Первой стадией растворения аморфного полимера является набухание молекулы растворителя проникают в объем полимера и раздвигают полимерные цепи. Одновременно лишь небольшое число полимерных молекул переходит в жидкий растворитель, образуя раствор малой концентрации. Процесс набухания протекает до полного использования растворителя с образованием гомогенного раствора. Это имеет место, однако, лишь при наличии неограниченной взаимной растворимости жидкого растворителя и аморфного полимера. [c.257]

    Полимерные соединения растворяются гораздо медленнее, чем обычные вещества. Растворителями для них, как правило, служат низкомолекулярные продукты. На первой стадии растворения идет процесс набухания, при котором полимер, многократно изменяя свой объем, сохраняет, однако, свою форму. Вязкость растворов высокомолекулярных соединений во много раз превышает вязкость концентрированных растворов низкомолекулярных соединений. При добавлении значительного количества растворителя достигается достаточная текучесть в широком диапазоне температур. Это наблюдается, например, у лаков и клеев на основе полимерных материалов. [c.380]

    Легко видеть, что в то время как необратимые, или лиофобные, коллоидные растворы являются типичными коллоидными системами, обратимые, или лиофильные, системы представляют собою не что иное, как растворы высокомолекулярных соединений. В самом деле, самопроизвольно растворяться в дисперсионной среде и давать растворы с коллоидными свойствами способны только вещества, распадающиеся в растворах на отдельные и притом очень большие молекулы. Такими веществами как раз и являются высокомолекулярные соединения. Самопроизвольное образование типичных коллоидных систем с межфазной поверхностью раздела, как правило, невозможно, так как это противоречит термодинамике. [c.26]

    Молекулярная теория находит подтверждение в ряде фактов и наблюдений. Во-первых, определение молекулярных весов в раа-бавленных растворах полимеров методами, прямо указывающими молекулярный вес частиц (например, методом светорассеяния), однозначно показало отсутствие в таких растворах мицелл, т. е. частиц, состоящих из агрегатов молекул. Во-вторых, растворение высокомолекулярного вещества, как и растворение низкомолекулярных соединений, идет самопроизвольно, часто с выделением тепла. Например, достаточно желатин внести в воду, а каучук в бензол, чтобы через некоторое время без какого-либо вмешательства извне образовался раствор полимера в растворителе. При диспергировании же вещества до коллоидного состояния, как известно, требуется затрата энергии на преодоление межмолекулярных сил. В-третьих, растворы полимеров термодинамически устойчивы и при соответствующих предосторожностях могут храниться сколь угодно долго. Коллоидные растворы, наоборот, термодинамически неустойчивы и способны стареть. Это объясняется тем, что при растворении полимеров всегда образуется гомогенная система и свободная энергия уменьшается, как, и при получении растворов низкомолекулярных веществ, либо за счет выделения тепла в результате взаимодействия полимера с растворителем, либо за счет увеличения энтропии. При получении же гетерогенной коллоидной системы ее свободная энергия всегда возрастает в результате увеличения поверхности дисперсной фазы. В-четвертых, растворение высокомолекулярных соединений не требует присутствия в системе специального стабилизатора. Лиофобные же золи не могут быть получены без специального стабилизатора, придающего системе агрегативную устойчивость. Наконец, растворы полимеров находятся в термодинамическом равновесии и являются обратимыми системами к ним приложимо известное правило фаз Гиббса. [c.434]


    Несмотря на малый коэффициент диффузии, растворы высокомолекулярных соединений обладают, как правило, высокой седиментационной устойчивостью, чему значительно способствует обычно малая плотность растворенного вещества. Поэтому молекулярный вес высокомолекулярных веществ можно определить методом седиментации только с помощью достаточно мощной ультрацентрифуги. [c.457]

    Различен и механизм обоих явлений. Коагуляция золей происходит обычно в результате сжатия двойного электрического слоя и уменьшения или полного исчезновения электрического заряда на поверхности частицы, являющегося в этом случае основным фактором устойчивости. Выделение же из раствора полимера при добавлении электролита объясняется уменьшением растворимости высокомолекулярного вещества в концентрированном растворе электролита. По аналогии с подобными явлениями в растворах низкомолекулярных веществ такое выделение высокомолекулярного вещества из раствора можно называть высаливанием. Дебай считает, что при высаливании молекулы растворенного вещества вытесняются из электрического поля введенных ионов, которые связываются с полярными молекулами растворителя. Таким образом, высаливание принципиально не отличается от выделения высокомолекулярного вещества из раствора при добавлении к последнему нерастворителя. Как правило, высаливающее действие ионов изменяется соответственно тому порядку, в каком они стоят в лиотропном ряду. Так, катионы по мере уменьшения их высаливающего действия могут быть расположены в ряд  [c.466]

    П. П. Веймарн и В. Оствальд предложили рассматривать свойства дисперсных систем только с позиции их степени дисперсности, не учитывая гетерогенности. Более общие представления о свойствах коллоидных растворов были развиты Н. П. Песковым, который подразделял коллоиды на два класса к первым он отнес коллоиды, которые самопроизвольно диспергируют в растворителе, образуя коллоидные растворы. Если вызвать коагуляцию такой системы, то в коагуляте окажется много растворителя. После удаления электролита (коагулята) коагулянт, как правило, сохраняет способность вновь диспергировать в растворителе. Второй класс коллоидов, по Н. П. Пескову, — это системы, у которых коагуляция необратима, коагулят (осадок), как правило, не содержит дисперсной среды. При этом только вторая группа коллоидных растворов представляет собой типичные коллоиды, инертные по отношению к дисперсионной среде. Как это ни парадоксально, но вещества, получившие впервые в истории науки название коллоиды (гуммиарабик, белки, крахмал), оказались не настоящими коллоидами. Водные растворы этих веществ в отличие от типичных коллоидов представляют собой гомогенные термодинамически равновесные системы, устойчивые и обратимые, т. е. представляют собой истинные растворы макромолекул высокомолекулярных соединений (ВМС). Различие двух типов коллоидов связано в значительной мере с гибкостью и асимметричным строением макромолекул. Последние взаимодействуют с растворителем (дисперсионной средой) подобно низкомолеку- [c.382]

    Предел, к которому стремится объем студня при синерезисе, зависит от концентрации студня. Синерезис обычно тем больше, чем выше концентрация растворителя в исходном студне. Опре-деленной зависимости скорости синерезиса от концентрации исходного студня нет. Например, при высоких концентрациях синерезис каучукового студня ускоряется, а студня крахмала и агара замедляется. Предельным объемом студня при синерезисе, по С. М. Липатову, является сумма объемов самих макромолекул и объема растворителя, сольватно связанного с высокомолекулярным веществом. Незначительное повышение температуры, как правило, способствует синерезису, облегчая перемещение молекул, необходимое для усадки студня. Однако при значительном повышении температуры может произойти переход студня в раствор. Внешнее давление на студень, конечно, всегда способствует синерезису. [c.491]

    Зная все тонкости коллоидных систем, В. А. Каргин очень скоро понял, в чем состоят принципиальные отличия растворов полимеров и коллоидных золей. Каргин писал В качестве основного доказательства микрогетерогенности обычно фигурирует неприменимость правила фаз к процессам растворения и осаждения высокомолекулярных веществ, что в наиболее общей форме было сформулировано в правиле осадков Во. Оствальда. Вторым доводом в пользу микрогетерогенности служит наличие необратимых процессов (гистерезисные явления нри оса ждении и растворении). Наконец, в качестве доказательства устойчивости таких мицел-лярных коллоидных растворов полимеров приводятся данные об исключительно больших сольватных оболочках на поверхности мицелл . [c.194]

    Коагуляция коллоидных растворов. Процесс уменьшения степени дисперсности дисперсной фазы под действием тех или иных факторов называется коагуляцией. Процесс коагуляции складывается из двух стадий скрытой коагуляции, когда непосредственно невооруженным глазом еще нельзя заметить каких-либо изменений, хотя в действительности частицы слипаются в более крупные агрегаты, и явной коагуляции, когда уже видно изменение цвета, усиление опалесценции, переходящей в мутность, и выпадение осадка или образование студня. В случае коллоидных растворов скрытая коагуляция сравнительно быстро переходит в явную. В растворах же высокомолекулярных веществ скрытая коагуляция, как правило, длительна и может не переходить в явную коагуляцию. [c.342]

    Все высокомолекулярные соединения трудно растворимы и притом растворяются лишь в ограниченном числе растворителей. Многие высокомолекулярные соединения совсем нерастворимы. Растворы высокомолекулярных соединений, как правило, обладают значительной вязкостью. Лишь немногие из высокомолекулярных соединений имеют достаточно четкую точку плавления, переходя в жидкотекучее состояние большинство из них при нагревании разлагается, не плавясь, хотя нередко разложению предшествует размягчение вещества. [c.343]

    При растворении полимеров наблюдаются различия в растворимости, обусловленные строением и формой макромолекул (см. табл. 4, стр. 16). Линейные полимеры переходят в раствор через стадию набухания чем более вытянутую форму имеет макромолекула в растворе, т. е. чем выше растворяющая способность растворителя для этого полимера, тем выше степень набухания и тем больше вязкость образующегося раствора при одинаковой концентрации. Замещенные макромолекулы, как правило, легче растворимы, чем незамещенные (эфиры целлюлозы по сравнению с целлюлозой). Для линейных полимеров скорость растворения и вязкость раствора зависят от размеров молекулы растворяемого вещества. Вещества, состоящие из шарообразных молекул, растворяются, как и низкомолекулярные соединения, без набухания, они образуют низковязкие растворы независимо от, величины молекулы. Существенное различие между процессом растворения низко- и высокомолекулярных соединений состоит в том, что в растворах низкомолекулярных веществ достигается предел насыщения при этом образуется осадок и растворимость не зависит от количества осадка (правило Гей-Люссака). При растворении полимеров в большинстве растворителей наблюдается либо неограниченное растворение, либо полное отсутствие его ). Если полимер обладает значительной полидисперсностью, т. е. в нем одновременно присутствуют молекулы малого и большого молекулярного веса, но одинакового состава и строения, и если применяется относительно плохой растворитель или смесь растворителей, то молекулы более низкого молекулярного веса могут растворяться, тогда как молекулы с большим молекулярным весом только набухают в этом случае осадок не содержит тех молекул, которые находятся в растворе, и концентрация полимера в рас- [c.129]

    Отдельные указания На применимость правила фаз к растворам высокомолекулярных веществ имелись еще в начале XX сто-летия. В. А. Каргин с сотр. подробно исследовал подобные системы и установил связь между применимостью правила фаз к растворению высокомолекулярных соединений и термодинамической устойчивостью и обратимостью растворов. Наиболее важной в этой области является работа В. А. Каргина, 3. А. Роговина и С. П. Папкова по исследованию растворов ацетата целлюлозы в различных растворителях — хлороформе, дихлорэтане, метиловом спирте, нитробензоле, метилэтилкетоне, метилпропилкетоне, бензоле, толуоле, этилацетате. Авторы установили, что при ограниченной растворимости ацетата целлюлозы после расслаивания системы и достижения равновесия как в верхнем, так и в нижнем слое раствора устанавливается определенная концентрация ацетата целлюлозы в зависимости от температуры. Процесс растворения оказался строго обратимым и термодинамически равновесным, концентрации были одними и теми же при подходе к заданной температуре как путем, нагревания, так и путем охлаждения. [c.435]

    Более подробно о пpимeни o ти правила фаз к растворам высокомолекулярных веществ см. Воюцкий С. С. Растворы высокомолекулярных соединений. Изд. 2-е, М., Химия , 1960, См с. 46. [c.436]

    Экспериментальное обоснование этих положений для растворов высокомолекулярных веществ заключается прежде всего в доказательстве применимости правила фаз, которое справедливо лишь для термодинамически равновесных систем. По отношению к белкам приложимость правила фаз была показана Галеотти (1904), Зерен-сеном, Мак-Бэном и др. Для типичных цепных макромолекул применимость правила фаз и обратимость растворов высокополимеров [c.152]

    Экспериментальное обоснование этих положений для растворов высокомолекулярных веществ заключается прежде всего в доказательстве применимости правила фаз (см. главу VIII), которое является справедли- [c.252]

    Наиболее подходящая толщина слоя носителя — 0,5 мм. Для нанесения носителя на пластинки могут быть использованы описанные выше приборы, позволяющие получать слой разной толщины. Если суспензию носителя раскатывать стеклянной палочкой, на обоих концах которой наклеено несколько витков изоляционной ленты, также образуется достаточно ровный слой. Свежеприготовленные пластинки в течение 20—25 мин подсушивают на воздухе. Их можно довольно долго хранить во влажной камере, если исключена возможность бактериального роста. При нисходящей тонкослойной гель-фильтрации пластинку располагают в камере под углом 10—15° Как правило, гель-фильтрацию проводят в водных растворах, поэтому хроматографическая камера может быть изготовлена из пластмассы. Она состоит из кюветы для буферного раствора, рамки, поддерживающей пластинку под соответствующим углом, и крышки. Подача буферного раствора на пластинку осуществляется с помощью фитиля из фильтровальной бумаги. В качестве маркеров удобно использовать окрашенные высокомолекулярные вещества (например, меченные флуоресцеином ферритин или 7-глобулин), которые не задерживаются частицами геля. Гель-фильтрацию проводят до тех пор, пока маркер не пройдет по крайней мере 10 см от линии старта. После этого пластинку извлекают из рамки и покрывают слой носителя листом фильтровальной бумаги (например, Шляйхер-Шуль 2043 или ватман 3 ММ), вырезанным по размеру пластинки. Некоторые исследователи рекомендуют применять в этом случае лист сухой фильтровальной бумаги. В нашей лаборатории используется смоченная и тщательно отжатая фильтровальная бумага, так как с ее помощью легче прикрыть слой носителя без образования под бумагой пузырьков воздуха. После этого бумагу снимают (иногда вместе с частичками геля), высушивают при температуре около 120°С и окрашивают красителями, выявляющими белок, или реактивом Паули. Наряду с другими красителями можно воспользоваться, например, амидовым черным ЮВ, кислым фуксином и т. п. Во время отмывания несвязавшегося красителя частички геля отделяются от бумаги, и после высушивания она может быть использована для документации. [c.239]

    Все вышесказанное подтверждает, что адсорбция из растворов — это сложный процесс, за.висяпдий как от взаимодействия молекул растворенного вещества и растворителя между собой в объемной и поверхностной фазах, так и от их взаимодействия с адсорбентом. Специфическую роль каждого нз этих факторов трудно охарактеризовать глубже, чем это было сделано при обсуждении правила Траубе. Вообще говоря, если между адсорбентом и адсорбатом образуются водородные связи, адсорбционная постоянная К достигает больших значений. Киплинг [17] приводит примеры относительно высокого сродства силикагеля к нитро- и нитрозопроизводным дифениламина и. -этиламииа [18] и значительно более сильной адсорбции фенола на активном угле по сравнению с его ди-орго-ироизводными грег-бутилового спирта [19]. Следует отметить, что поверхность многих активных углей частично окислена. Так, сферой 6 содержит на поверхности атомы кислорода [20], на которых спирт адсорбируется предпочтительнее, чем бензол. Однако после обработки при 2700 °С, приводящей к образованию гра-фона, адсорбируется преимущественно бензол [21]. Ароматические соединения проявляют тенденцию к преимущественной адсорбции на алифатических группах, например на поверхности углерода, что, по-видимому, обусловлено л-электронным взаимодействием, или, другими словами, высокой поляризуемостью ароматических групп. В случае массивных ароматических молекул эта тенденция ослабляется, возможно, вследствие увеличения расстояния между ароматической группой и поверхностью адсорбента [19]. Такие высокомолекулярные вещества, как сахар, красители и полимеры, больше склонны к адсорбции, чем их более легкие аналоги. Порядок элюирования из хроматографических колонок обычно является обратным по отношению к величинам К, характеризующим адсорбционную активность вещества. Таким образом, даже основываясь на качественных хроматографических данных, имеющихся в литературе, можно сравнивать адсорбционные свойства различных веществ. Данной теме посвящено множество обзоров, например обзор Негера [22]. [c.315]

    Правило фаз применимо к системам жидкость—эфир целлюлозы. Установление этого положения для указанных систем важно потому, что до сих пор в ряде работ, посвященных изучению эфиров целлюлозы (и вообще высокомолекулярных веществ), эти системы рассматриваются как особые системы, к которым неприложимы основные закономерности, характерные для низкомолекулярных веществ. Например, открытым оставался вопрос о возможности получения насыщенных растворов эфира целлюлозы в растворителях. Равновесие между двумя растворами, состоящими из двух одинаковых компонентов, должно быть бивариантным. Рассматривая систему как конденсированную (давление имеет незначительное влияние на равновесие) и фиксируя давление, мы должны иметь дело с унива-риантной системой. Приведенные в экспериментальной части данные относительно изменения концентрации равновесных фаз с температурой подтверждают унивариантность системы. Обе фазы представляют собою насыщенные растворы эфира целлюлозы в жидкости и идкости в эфире целлюлозы. Особенно наглядным подтверждением применимости правила фаз является невозможность существования (расслоение) растворов, находящихся внутри кривой температура—растворимость (хлороформ—ацетилцеллюлоза). Специфичность систем эфир целлюлозы—жидкость заключается главным образом в неоднородности эфира целлюлозы как в отношении [c.234]

    При соблюдении условий однородности и достижения равновесия в ряде случаев удалось доказать применимость правила фаз к системам высокомолекулярное вещество—растворитель. Впервые это было сделано Зеренсеном для кристаллического альбумина в водном растворе сульфата натрия [5, 61. Далее в работах Мак-Бэна и Джеймсона [7] также была показана применимость правила фаз для растворов белков. В последнее время нами [8] было найдено, что правило фаз применимо и для систем ацетилцеллюлоза—растворитель. [c.243]

    Характеристика и идентификация высокомолекулярных веществ, как правило, не может быть проведена с той точностью, с которой устанавливается строение низкомолекулярных органических соединений. Это объясняется трудностью очистки полимеров, а также многочисленными небольшими различиями в строении отдельных молекул, которые еще не могут быть установлены применяемыми в настоящее время методами исследования. Низкомолекулярные соединения любой степени чистоты всегда люгут быть получены путем перегонки или перекристаллизации. Высокомолекулярные соединения не летучи. Единственная возможность очистки высокомолекулярных веществ, если они растворимы, заключается в переосаждении, которое состоит в том, что полимер растворяется и вновь осаждается такими веществами, которые растворяют примеси, присутствующие в полимере. Для переосаждения можно применять различные осадители, например полиэфиры растворяют в бензоле и осаждают метанолом, затем снова растворяют и осаждают петролейным эфиром. Растворитель и осадитель должны хорошо смешиваться друг с другом, поэтому следует применять такие системы, которые смешиваются во всех отношениях (например, полиамиды растворяются в феноле и осаждаются из раствора водой). Температура осаждения поддерживается такой, чтобы полимер осаждался по возможности в твердом виде часто целесообразно применять низкую температуру осадительной ванны, однако полному вытеснению растворителя благоприятствует повышенная температура. Оба этих фактора следует учитывать при выборе температуры осаждения. Если полимер выпадает в виде смолы, сушка или удаление растворителя и осадителя крайне замедляются, если они вообще возможны (см. о процессе инклюдирования). [c.127]


Смотреть страницы где упоминается термин Растворы высокомолекулярных веществ правило: [c.237]    [c.170]    [c.188]    [c.284]    [c.181]    [c.134]   
Физическая и коллоидная химия (1964) -- [ c.247 ]




ПОИСК





Смотрите так же термины и статьи:

Высокомолекулярные вещества

Растворы высокомолекулярных веществ,



© 2024 chem21.info Реклама на сайте