Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Высокомолекулярные вещества свойства

    Характерной особенностью растворов высокомолекулярных веществ является большое различие размеров молекул растворенного вещества и растворителя. Вследствие этого ряд свойств растворов высокомолекулярных веществ имеет специфические особенности, хотя в общем эти растворы следуют тем же рассмотренным выше термодинамическим закономерностям, что и растворы низкомолекулярных веществ. [c.254]


    Простейшим методом изучения термодинамических свойств растворов высокомолекулярных веществ является измерение давления пара растворителя. [c.255]

    Химический состав, строение и свойства высокомолекулярных соединений нефти характеризуются рядом общих особенностей, отличающих их от других групп природных и синтетических высокомолекулярных веществ. Ниже приводятся некоторые из основных особенностей высокомолекулярных соединений нефти. [c.12]

    Как расчет термодинамических величин, отнесенных к молю раствора или компонента, так и развитие статистической теории требуют знания состава раствора, выраженного через мольные (л ,) или мольно-объемные (ср,) доли компонентов. Для расчета этих величин необходимо знать молекулярные веса компонентов, особенно полимера. Эта задача не проста. Для определения молекулярного веса Ма необходимо, как мы знаем, измерить кол-лигативное свойство предельно разбавленного раствора. Вследствие того что в растворах высокомолекулярных веществ имеют место большие отрицательные отклонения от закона Рауля, свойства предельно разбавленных растворов проявляются лишь при малых концентрациях растворенного вещества. Прн этих условиях такие коллигативные свойства, как понижение давления пара или понижение точки затвердевания, используемые для определения молекулярного веса, становятся настолько малыми, что их крайне трудно измерить. Только осмотическое давление таких растворов имеет достаточно точно измеримую величину (например, осмотическое давление 5%-ного раствора каучука в бензоле ( 2=4-19 ) равно 10 мм рт. ст.]. В связи с этим измерение осмотического давления растворов полимеров получило широкое распространение как метод определения молекулярного веса высокомолекулярных веществ в растворе. Точное измерение малых осмотических давлений проводится с помощью специальных, тщательно разработанных методик. [c.258]

    Коллоидные системы по своим свойствам приближаются к обычным молекулярным растворам, получаемым при растворении высокомолекулярных веществ. К последним относятся белки, каучук, различные синтетические продукты полимеризации и поликонденсации. В растворах таких веществ достигается молекулярная степень дисперсности, однако сами молекулы настолько велики, что их растворы обладают рядом свойств лиофобных коллоидов. Эти растворы называют иногда лиофильными коллоидами благодаря их большей устойчивости по сравнению с лиофобными коллоидами, что свидетельствует о большем сродстве указанных веществ к растворителю. [c.8]


    Таким образом, растворы высокомолекулярных веществ близки к атермальным. Обращаясь к уравнениям (VII, 54), (VII, 55) и (VII, 56), видим, что термодинамические свойства высокомолекулярных веществ определяются, в первую очередь, энтропийным членом. Так как для этих растворов характерны большие положительные величины энтропии образования раствора, то коэффициенты активности компонентов этих растворов много меньше единицы. [c.255]

    Зависимость кристаллической структуры остаточных продуктов от их происхождения, не наблюдаемая у дистиллятных продуктов, может быть объяснена тем, что фракционный состав остаточных продуктов по температурам кипения искусственно ограничивается только началом кипения, в то время как для дистиллятных продуктов он ограничивается также и концом кипения. Поскольку же конец кипения остаточных продуктов, а следовательно, и верхний предел молекулярного веса входящих в них компонентов не ограничивается (при перегонке), то этот предел будет определяться теми наиболее высокомолекулярными веществами, которые первоначально находились в исходной нефти и перешли в остаточный продукт, т. е. будет зависеть от природы исходной нефти. Поэтому от природы исходной нефти будут зависеть также и свойства остаточных продуктов, являющиеся функцией молекулярного веса составляющих их компонентов, в том числе и их кристаллическая структура. [c.33]

    Взаимодействие бумаги с краской имеет сложный механизм. Существенное влияние на качество оттиска оказывает взаимодействие компонентов краски, в частности растворителя и высокомолекулярного вещества, растворителя и пигмента-сажи. Несомненно, на этот процесс оказывает влияние взаимодействие между двумя видами дисперсной фазы в краске, сформированными структурными образованиями высокомолекулярных соединений и углеродным пигментом. Подобные вопросы в литерату эе практически не рассматривались и были поставлены в связи с современным этапом развития коллоидно-химической технологии нефтяного сырья. Рассматривая с этих позиций превращения в композициях краски, можно предположить возможность сорбции высокомолекулярных веществ на саже, выделение фазы из межчастичного пространства сажевых агрегатов и, наконец, образование двух несме-шивающихся видов дисперсной фазы в растворе. Указанные превращения играют решающую роль в поведении краски и должны учитываться при выборе оптима чь-ных компонентов красок и решении рецептурной задачи. Были изучены закономерности в реологических свойствах наполненных и ненаполненных сажей растворов высокомолекулярных соединений нефти в минеральных маслах, количественные характеристики удерживающей способности высокомолекулярных соединений нефти по отношению к минеральным маслам, закономерности изменения устойчивости получаемых растворов, определены параметры взаимодействия в этих растворах между высокомолекулярным веществом и пигментом. Практическим выходом работы явилось создание новой рецептуры черной печатной газетной краски на базе побочных продуктов процессов переработки нефти. [c.252]

    При рассмотрении проблем, связанных с получением чистых высокомолекулярных углеводородов, возникают специфические трудности. Наиболее важной проблемой является большое число возможных примесей изомеров или гомологов с малым различием физических свойств, в частности температур кипения, что уменьшает эффективность процесса фракционного разделения при очистке. Кроме того, применению колонок высокой эффективности для фракционной перегонки обычно препятствует очень низкая упругость паров высокомолекулярных веществ. [c.496]

    Свойства растворов высокомолекулярных веществ [c.255]

    Между асфальтенами и смолами трудно провести четкую границу в силу близости их элементного состава и сходства в структуре углеродного скелета и их справедливо относят к одной группе высокомолекулярных веществ — неуглеводородным компонентам. В составе же нефтяных высокомолекулярных полициклических углеводородов и смол имеется принципиальное различие — последние являются гетероатомными производными углеводородов. Методы разделения асфальтенов и смол основаны на различии в размерах мх молекул, а также обусловленном последним обстоятельство различии некоторых физических свойств (растворимость, адсорбционная способность, склонность к ассоциации и др.). [c.42]

    В процессе очистки промышленных сточных вод активированным антрацитом ароматические вещества, содержащиеся в стоках, оседают в порах антрацита, что ухудшает его адсорбционные свойства. Для восстановления активности антрацита его регенерируют нагреванием при 700—750 °С в среде водяного пара или парогазовой смеси. Перегретый пар способствует десорбции органических соединений и, действуя как окислитель, препятствует образованию в парах антрацита смолистых и высокомолекулярных веществ. Длительность процесса регенерации в печи КС составляет 40—60 мин. Потери антрацита рри регенерации равны 10%. [c.241]


    Поскольку теплота образования растворов высокомолекулярных веществ имеет второстепенное значение для определения термодинамических свойств этих растворов, статистическая теория их разрабатывается в основном для крайнего случая атермальных растворов (в которых ДЯр=0) с введением поправок, учитывающих небольшие тепловые эффекты и использующих теорию регулярных растворов. [c.255]

    Следует иметь в виду, что далеко не всегда величина молекулярного веса данного полимера надежно установлена или даже просто измерена. Поэтому свойства растворов высокомолекулярных веществ нередко сопоставляются не с истинными мольными долями, ас весовыми концентрациями или с условными мольными долями х. Последние рассчитываются так, что полимеризация [c.260]

    Существующие в природе или полученные синтетическим путем высокомолекулярные вещества, обладающие резиноподобными свойствами. [c.214]

    Наряду с высокомолекулярными соединениями в состав пластических масс входят различные наполнители, пластифицирующие вещества, красители и пр., причем, в зависимости от вида и содержания этих веществ, свойства материала могут различаться в значительной степени. [c.160]

    Переходя к рассмотрению особенностей внутреннего строения и свойств полимеров в указанных трех состояниях, мы начнем с высокоэластичного состояния, которое свойственно только высокомолекулярным веществам и в котором наиболее отчетливо выявляются особенности свойства, обусловленные большой величиной молекул. [c.573]

    Релаксационные явления свойственны не только высокомолекулярным веществам. Мы уже сталкивались с явлением релаксации при рассмотрении кинетических свойств газов ( 35) и электропроводности растворов электролитов ( 168). Релаксация наблюдается и во многих других системах и явлениях. Однако в низкомолекулярных системах подвижность частиц настолько велика, что релаксация заканчивается в кратчайшие промежутки времени, измеряемые тысячными или миллионными долями секунды или еще быстрее. Поэтому в тех системах с влиянием релаксации прихо дится сталкиваться только при рассмотрении процессов, происхо дящих с очень большими скоростями. Но в полимерах рассмотрен ные выше особенности внутреннего строения и затрудненность пе ремещения частиц, обусловленная различными связями между цепями, приводят к тому, что некоторые перемещения частиц про исходят чрезвычайно медленно. Это приводит к малой скорости соответствующих релаксационных явлений и существенно отражается на многих свойствах. [c.580]

    Гибкость — основное свойство полимерных цепей, приводящее к качественно новым свойствам высокомолекулярных веществ — высокоэластичности и отсутствию хрупкости в твердом состоянии ниже температуры стеклования. Связанная с явлением внутреннего вращения, наблюдаемым как в низко-, так и в высокомолекулярных веществах, гибкость может проявиться только при достаточно длинных цепочках. Это свойство характерно для полимеров, хотя частично гибкость наблюдается и у олигомеров. [c.15]

    Книга — второе, переработанное и дополненное издание курса коллоидной химии, являющегося учебником для химико-технологических вузов (1-е издание вышло в 1964 г.). В ней изложены общие понятия и законы коллоидной химии,, описаны свойства коллоидных систем, методы их исследования и приложение коллоидной химии к решению практических задач. Отдельная глава посвящена высокомолекулярным веществам и их растворам. Наиболее переработаны введение, главы, посвященные адсорбции, и глава, в которой рассматривается устойчивость и коагуляция коллоидных систем. [c.2]

    Представляют собой бесцветные жидкости с очень высокой растворяющей способностью — они растворяют многие высокомолекулярные вещества, в том числе некоторые полимеры. Смешиваются с водой г.о всех соотношениях. Химически устойчивы, но разлагаются при контакте со щелочами и кислотами. Находят все более широкое применение в органическом синтезе и синтезе высокомолекулярных соединенпл. Ускоряют протекание многих реакций. Свойства некоторых амидов кислот приведены в табл, 8. [c.64]

    Степень разрушения полимерных гдатериалов заввеит, с одной стороны, 01 строения и свойств высокомолекулярного веществ , с другой - от характера внешних воздействий (температура, состав [c.31]

    Свойства полимеров зависят от степени сшивания. Из сравнения трехмерной структуры с линейной структурой видно, что при трвуп рноН структуре не только повышается химическая стойкость высокомолекулярных веществ, но улучшается и ряд других свойств. Так, например, сырой каучук, который является типичным представителем высокомолекулярных веществ с цепеобразными молекулами, еше не обладает химической стойкостью, он легко разрывается при растяжении, превращается в липкую смолу при нагревании до 40-50°С, а на морозе в хрупкую массу, которую можно без труда разбить молотком. В результате вулканизации каучука происходит перестройка линейных молекул в рсхмерное состояние с образованием резины, которая обладает высокими физико-механическими сЁойст-вами и химической стойкостью. [c.32]

    В результате полимеризации могут получаться высокомолекулярные вещества, обладающие пластическими свойствами (синтетические каучуки, полиизобутилен или оппанол, тиокол и т. д.), которые объединяют под названием эластомеров, или же твердые (растворимые или нерастворимые, плавкие или неплавкие) полимеры, известные под названием пластомеров. К последним относятся так называемые пластмассы (целлулоид, бакелиты, глифтали, коросил, полистиролы, акрилоиды и т. д.). Некоторые считают, что термопластичные полимеры—акрилаты и метакрилаты, полистиролы, поливиниловые эфиры и т. д.—занимают промежуточное место, и называют их эластопластиками [3]. [c.587]

    В ходе многочисленных исследований было установлено, что каждому физико-химическому свойству соответствует несколько длин волн, на которых выполняются соотношения (4.2) - (4.4). Установлено, что каждому свойству соответствует длина волны, при котором эти соотношения выполняются с максимальной точностью. Такие длины волн называются аналитическими. В таблице 4.2 приведены аналитические длины волн для различных свойств и, соответствующие им, коэффициенты корреляции. Относительная ошибка определения свойств по уравнениям (4.4) - (4.5) не превышает 4%, а коэффициент корреляции - 0,85-0,99. Как видно из данных таблицы 4.2, принцип квазилинейной связи (ПКС) выполним даже в таких сложных веществах, как нефть, нефтепродукты, топлива, углеродистые вещества, полимерные смеси, асфаль-то-смолистые высокомолекулярные вещества и др. На основе ПКС предложены экспрессные методы, позволяющие определять по легкоопределяемой характеристике - коэффициенту поглощения, практически все трудноопредеяе-мые свойства молекулярных веществ и многокомпонентных смесей, например, молекулярную массу, вязкость, элементный состав, показатели термостойкости, температуру хрупкости, концентрацию парамагнитных центров, энергию активации вязкого течения, энергию когезии, температуру вспышки, вязкость, показатели реакционной способности и т.д. [14-30]. По сравнению с общепринятыми методами, время определения свойств сокращается от нескольких часов до 20-25 минут. Как свидетельствуют данные [14], для рассматриваемых свойств на аналитических длинах волн выполняется условие соответствия определения по общепринятым методам и расчетам по оптимальным параболическим и кубическим зависимостям. [c.90]

    Нет никаких сомнений, что большая часть органического и минерального вещества Вселенной сосредоточено в МСС. По данным [60-66], можно выделить различные виды МСС, отличающиеся своей природой (табл. 1.1). Нефти и нефтяные дисперсные системы, газы и газоконденсаты наиболее изученные МСС [53-59]. Экологические системы, которые также относятся к МСС [63], будут рассмотрены во второй части книги. По данным радиоастрономии газопылевые межзвездные облака, занимающие гигантские области Вселенной, содержат в своем составе органические МСС, состоящие из низших углеводородов ряда метана, гетероатомные азотсодержащие и оксосоединения циан, цианоацетилен, аминокислоты [27]. Живые существа создают МСС из продуктов метаболизма и деградации. Технологические процессы также генерируют МСС. Последние образуются в нефтехимических процессах оксосинтеза Фишера-Тропша, каталитическом риформинге, алкилировании, крекинге, пиролизе и т. д. 19,20,58]. Полимеры также являются МСС. Авторами 25] отмечено, что каждую компоненту полимера с определенной молекулярной массой и структурой можно рассматривать как индивидуальное вещество. Любой полимер это стохастическая система, состоящая из компонентов одного гомологического ряда. В отличие от индивидyi льныx компонентов продукты окислительной, фотохимической деструкции полимеров являются типичными МСС. Таким образом, МСС формируются в результате деструкции и синтезе различных веществ. Системы с разной природой компонентов, включающие высокомолекулярные и низкомолекулярные вещества мало изучены. Целесообразно отдельно выделить высокомолекулярные МСС. Свойства таких систем, не менее нем химическая природа, определяют статистический закон распределения состава и вероятность различия компонентов (глава 2). Вероятность различия компонентов характеризует степень химической неодно- [c.6]

    Исследования многих ученых показали, что свойства связанной воды Д0В0Л11Н0 резко отличаются от свойств свободной воды. По степени упорядоченности структуры связанная вода приближается к свойствам твердого тела и имеет большую плотность по сравнению с водой свободной. Исследования А. Раковского (1931) показали, что плотность связанной воды на поверхности, например, набухшего крахмала колеблется в пределах 1,28—2,45. Диэлектрическая постоянная ее равна 2,2 вместо 81, что обусловливает ее по-пижеиную способность растворять электролиты и полярные неэлектролиты. Исследования показали, что гидратные оболочки высокомолекулярных соединений не обладают растворяюшими свойствами, поэтому высокомолекулярное вещество растворяется только в свободной воде. [c.334]

    Все эти сложные полисахариды являются высокомолекулярными веществами, и молекулы их построены из очень большого числа цепеобразно связанных гексозных остатков. Об этом видeтeльJ твyeт их малая растворимость в воде, коллоидный характер и природа первичных продуктов гидролитического расщепления — декстринов, которые сами обладают еще коллоидными свойствами. [c.453]

    Высокомолекулярные вещества, растворенные в хорошем растворителе образуют термодинамически обратимые, молекулярные, гомогенные, то есть однофазные, агрегативно устойчивые системы. Однако, в плохо растворяющей или в нерастворяющей среде высокомолекулярные вещества образуют дисперсные системы со свободными поверхностями раздела, поведение которых соответствует типичным микрогетерогенным дисперсным системам. Так, макромолекулы медленно диффундируют в растворе, не проникают через полунепроницаемые мембраны. Однако по некоторым свойствам растворы высокомолекулярных соединений имеют сходство с коллоидными системами, в связи с чем растворы высокомолекулярных соединений иногда называют молекулярными коллоидами. Так, например, размеры макромолекул соизмеримы, или даже превышают размеры коллоидных частиц. Впрочем, эта соизмеримость проявляется лишь по длине макромолекул, поперечные же их размеры соответствуют размерам обычных молекул. [c.28]

    С помощью описанных методов были исследованы сотни объектов и получено много интересных данных. Особенно важными, как уже отмечалось, являются исследования более сложных высокомолекулярных веществ. Не следует, однако, забывать, что свойства, наблюдаемые у поверхностных пленок, неадекватны свойствам тех же веществ, когда они находятся в трехмерном состоянии. Роль подложки очень велика, и ее значение, а следовательно, и особенности состояния монослоя проявляются в большей степени у высокомолекулярных веществ, имерщих более сложное строение. [c.131]

    Поверхность катализатора — точнее активное высокомолекулярное вещество в целом — приобретает новые свойства в результате химического воздействия на него каталитически преобразующих веществ. Эти свойства зависят от химического характера образовавшихся функциональных групп. [c.74]

    Существует класс весьма важных веществ с очень большими молекулами, так называемые высокомолекулярные соединения, или полимеры. Сюда относятся белки, целлюлоза, каучук и ряд синтетических продуктов. Размеры молекул этих веществ в отдельных случаях могут даже превышать размер коллоидных частиц. Возникает вопрос, являются ли растворы этих веществ коллоидными системами. Казалось бы, на этот вопрос следует ответить положительно, так как эти растворы, содержащие гигантские молекулы, обладают многими свойствами, характерными для коллоидных растворов, например, способностью к диализу и малой диффузией. Однако, как показали исследования последних десятилетий, в достаточно разбавленных растворах высокомолекулярные соединения раздроблены до. калекул и, следовательно, эти растворы представляют собою гомогенные системы. Поэтому их нельзя отнести к типичным коллоидным системам. Растворы белков, целлюлозы, каучука и других подобных веществ во избежание путаницы лучше называть не коллоидными растворами, как это было принято раньше, а растворами высокомолекулярных веществ. Это название указывает, что данные системы, во-первых, являются истинными растворами и, во-вторых, что в них содержатся гигантские молекулы. [c.14]


Смотреть страницы где упоминается термин Высокомолекулярные вещества свойства: [c.357]    [c.8]    [c.477]    [c.110]    [c.383]    [c.85]    [c.8]    [c.13]    [c.14]    [c.5]    [c.68]    [c.70]    [c.226]    [c.405]    [c.162]    [c.232]   
Очистка воды коагулянтами (1977) -- [ c.13 , c.17 , c.36 , c.287 ]




ПОИСК





Смотрите так же термины и статьи:

Ахмедов К С. Регулирование свойств дисперсных систем низко- и высокомолекулярными полифункциональными поверхностно-активными веществами

Высокомолекулярные вещества

Высокомолекулярные вещества и их растворы Получение и свойства ВМВ

Диэлектрические свойства высокомолекулярных веществ

Механические свойства высокомолекулярных веществ

Некоторые свойства растворов высокомолекулярных веществ

Общие сведения о химии высокомолекулярных веществ, их получении и свойствах

Природа и некоторые свойства растворов высокомолекулярных веществ

Свойства веществ

Состав и свойства высокомолекулярных веществ

Строение макромолекул и свойства высокомолекулярных веществ

Термодинамические свойства растворов высокомолекулярных веществ



© 2025 chem21.info Реклама на сайте