Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Белки синтез микробиологически

    В последние годы широкое применение в народном хозяйстве и медицине находят различные аминокислоты. Особое значение они имеют для сбалансирования белкового питания. Некоторые пищевые и кормовые продукты не содержат в своем составе необходимых количеств незаменимых аминокислот, в частности лизина. К таким продуктам относятся пшеница, кукуруза, овес, рис и ряд других. Для ликвидации возможного дисбаланса аминокислоты используют в чистом виде или вводят в состав комбинированных кормов, выпускаемых промышленностью. Поэтому основной сферой применения аминокислот следует считать создание рационов, позволяющих понизить содержание растительных белков в кормах. Показано, что искусственные смеси аминокислот позволяют экономить расход естественных кормов. Кроме добавок к кормам сельскохозяйственных животных, аминокислоты используются в пищевой промышленности. Применяются они и при изготовлении ряда полимерных материалов, например синтетической кожи, некоторых специальных волокон, пленок для упаковки пищевых продуктов. Ряд аминокислот или их производных обладают пестицидным действием. Метионин и у-аминомасляная кислота широко применяются как лекарственные средства. Удельный вес применения аминокислот в различных отраслях хозяйства может быть продемонстрирован на примере Японии, где на долю пищевой промышленности приходится 65% всех производимых в стране аминокислот, на животноводство — 18, для медицинских целей — 15 и на прочие нужды — 2 %. Мировой уровень производства аминокислот достигает в настоящее время нескольких миллионов тонн в год. В наибольших количествах в мире вырабатываются L-глутаминовая кислота, L-лизин, DL-метионин, L-аспарагиновая кислота, глицин. Основными способами получения аминокислот являются следующие экстракция из белковых гидролизатов растительного сырья, химический синтез, микробиологический синтез растущими клетками, при использовании иммобилизованных микробных клеток или ферментов, выделенных из микроорганизмов. [c.338]


    Жидкие парафины приобрели большое значение как сырье нефтехимического и микробиологического синтеза. На их основе получают поверхностно-активные вещества, моющие средства, кормовые белки. Наибольшим спросом пользуются жидкие парафины Сю—С 8, получаемые из прямогонной дизельной фракции 200—320 °С. [c.316]

    Перспектива увеличения производства полимерных материалов на основе целлюлозы, хитина и фибриллярного белкового сырья (типа фиброина, коллагена, кератина и пр.), особенно при условии создания интенсифицированных микробиологических технологий по синтезу этих волокно- и пленкообразующих полимеров, является достаточно реальной. Весьма парадоксальным и, по-видимому, случайным является факт образования природных полимерных углеводов на основании формирования О-рядов, а белков - Ь-рядов. И еще два замечания необходимо сделать при анализе ситуации, связанной с возможностью использования природных полимеров, и в частности белков, в качестве волокнообразующих полимеров. [c.336]

    Благодаря развитию в последние годы промышленности микробиологического синтеза ферменты стали более доступны. Это позволяет применять их не только в пищевой промышленности. Ферменты, катализирующие реакции расщепления водой белков, жиров и углеводов, в очень небольших количествах вво- дят в синтетические моющие средства, предназначен- ные для стирки, [c.113]

    Клетка. Основу биотехнологической системы составляют процессы микробиологического синтеза, направленные на получение разнообразных целевых продуктов биосинтеза — белков, аминокислот, липидов и др. Важную роль играют также процессы биологической очистки, направленные на утилизацию органических и неорганических соединений растущими на данном субстрате микроорганизмами. Индустриальное использование процессов культивирования микроорганизмов связано со способностью клеток в определенных условиях окружающей среды расти и размно- [c.7]

    Одной из важнейших научно-технических проблем современности является проблема существенного удешевления производства водорода. Актуальность этой проблемы связана не только с острой необходимостью удешевления производства азотных удобрений, метанола и других химических продуктов, чо и с реальной перспективой быстрого расширения масштабов потребления водорода в металлургической и нефтеперерабатывающей промышленности. Водород может использоваться в качестве реактивного, авиационного и автомобильного топлива. Учитывая возможность снижения токсичности выхлопа двигателей при переводе их на водород, последний считают топливом будущего. Наиболее оригинальным и, возможно, исключительно перспективным направлением использования газа конверсии углеводородов может оказаться синтез пищевого белка путем микробиологического окисления водорода. [c.274]


    На предприятиях микробиологической промышленности осваивается микробиологический синтез кормового белка из парафиновых углеводородов нефти, этанола и метанола. [c.9]

    В настоящее время наиболее перспективным представляется микробиологический синтез белков из углеводородов нефти. В конце 50-х годов были найдены микроорганизмы, которые могут питаться парафиновыми углеводородами. При этом из тонны углеводородов получается около тонны полноценных белковых веществ. В образовавшейся массе содержатся также витамины группы В. [c.339]

    В промышленных масштабах ультрафильтрацией очищают сточные воды, отделяют культуральные жидкости от продуктов микробиологического синтеза, концентрируют биологически активные вещества белки, ферменты, антибиотики и т. д. [c.23]

    При отсутствии этана аналогичное положение с использованием ресурсов пропилена может сложиться и при увеличении темпов прироста производства этилена, которое может быть обусловлено ускоренным развитием производства изделий из полиэтилена (труб и др.) и необходимостью организации крупнотоннажного производства кормового белка из синтетического этилового спирта методом микробиологического синтеза. В перспективе этан может превратиться в ряде случаев из альтернативного в основное углеводородное сырье — ведутся разработки синтеза ви-нилхлорида, ацетальдегида, этилового спирта и других продуктов непосредственно из этана, минуя дорогостоящую стадию производства этилена [7]. Таким образом, этан — это весьма ценное и высокоэффективное химическое и нефтехимическое сырье. [c.9]

    Возможно, что когда-нибудь поставщиком необходимых пищевых белков станет химический синтез, но сейчас имеется еще немало неиспользуемых природных ресурсов. Значительных успехов предстоит достигнуть, например, на путях использования ряда новых сельскохозяйственных источников белка и микробиологической переработки неорганических веществ, углеводных отходов и углеводородов нефти в усвояемые белки. [c.610]

    Белки, полученные микробиологическим синтезом, по-видимому, еще не были использованы для производства волокна. [c.427]

    Изучение процессов микробиологического синтеза. Речь идет не только о продуцировании ферментов, но и о микробиологическом синтезе разнообразных групп веществ (антибиотики, аминокислоты, витамины, стимуляторы роста, кормовые белки)— синтезе, проводимом в основном при помощи соответствующих ферментных систем микробов. Изучение этих процессов создает теоретические и технологические основы всех отраслей микробиологической промышленности. [c.327]

    Основное количество метаиола используется для производства формальдегида (50 %), диметилтерефталата (10—15 %), метилмета-крилата, метиламинов, а также как добавка к топливу и для микробиологического синтеза белков. [c.370]

    В нашей стране микробиологическому синтезу уделяется большое внимание. Предприятия микробиологической промышленности производят кормовые белки, ферменты, витамины, аминокислоты и антибиотики, а также различные препараты для сельского хозяйства — нитрагин, азотобактерин, энтобактерин и ацидофильные культуры. Медицинская промышленность также получает ряд препаратов микробиологическим путем (антибиотики, гормоны, токсины). [c.5]

    В промышленности проводят также микробиологический синтез белков из углеводородов нефти его осуществляют микроорганизмы, для которых алканы служат пищей. При этом из 1 т углеводородов получается 1 т полноценных белков в образовавшейся массе содержатся и витамины группы В. [c.333]

    Микробиологический синтез кормового белка, отдельных аминокислот, витаминов, гормонов [c.8]

    Алканы в настоящее время являются основными исходными соединениями в промышленности основного органического синтеза и микробиологического синтеза белка.— Прим.. ред. [c.98]

    Биохимические процессы наиболее перспективны для химической технологии. Они происходят в живой природе в атмосферных условиях (без повышения температуры, давления) под действием высокоактивных природных катализаторов — ферментов и гормонов, а также микроорганизмов, содержащих эти катализаторы. Возможности биохимических процессов в промышленности не ограничены, хотя природные биохимические процессы пока недостаточно изучены и еще мало воспроизведены в модельных условиях. Недавно возникла новая отрасль науки — техническая микробиология, которая изучает биохимические методы производства самых разнообразных химических продуктов. На практике реализован микробиологический синтез антибиотиков, витаминов, гормонов. В перспективе технической микробиологии находятся проблемы фиксации атмосферного азота, синтеза белков и жиров, окисления серы в диоксид и триоксид серы и, наоборот, [c.254]

Рис. 3-1. Микробиологический процесс синтеза белка на основе метанола. Рис. 3-1. <a href="/info/1807615">Микробиологический процесс синтеза</a> белка на основе метанола.

    Микробиологический синтез технических белков, липидов, приводящий к сокращению затрат пищевых продуктов на технические нужды [c.8]

    Микробиологический синтез пищевого белка, аминокислот, витаминов, углеводов, вкусовых добавок и других веществ для пищевой промышлен ности  [c.8]

    Если бы заменить нефть, применяемую как топливо, другил1 и источниками энергии, то ее ресурсы в качестве сырья для производства пищи и высокомолекулярных соединений были бы практически неисчерпаемы. Используя для микробиологического синтеза всего 4% мировой добычи нефти, можно обеспечить белковый рацион всего населения земного шара. Однако ныне производятся белки, пригодные лишь в качестве добавок к корму скота. Ведутся поиски путей производственного связывания атмосферного азота с помощью микробиологического синтеза. [c.12]

    В настоящее время мировой дефицит белка составляет около 15 млн т. Наиболее перспективен микробиологический синтез, что следует из представленных ниже данных. Если для крупного рогатого скота требуется 5 лет для удвоения белковой массы, для свиней — 4 мес, для цыплят — I мес, то для бактерий и дрожжей — 1—6 ч. Мировое производство пищевых белковых продуктов за счет микробного синтеза составляет более 15 тыс. т в год. [c.10]

    Применяемая до сих пор лишь в незначительном объеме целлюлоза в будущем станет основным сырьем для микробиологического синтеза белка. Подходящие для этого бактериальные штаммы изучаются. Оптимизацией условий ферментации (марганец в качестве микроэлемента) была достигнута степень превращения до 60%. Из 1 кг соломы получают, например, 250 — 300 г биомассы. [c.342]

    Фактически в Западной Европе в 1975 г. Oeuio произведено н-ажанов всего 1.06, млн.т. Следовательно, в нефти имеются большие ресурсы н-алканов для производства белков путем микробиологического синтеза. [c.271]

    Вопросы термостатирования ферментационного процесса, т. е. подвода или отвода тепла в ходе ферментации, являются очень острыми в целом ряде производств биотехнологии. В аэробных условиях, особенно при производстве белка одноклеточных, микробиологический синтез протекает со значительным тепловыделением, поэтому перед технологами возникает проблема отведения значительных количеств тепла из аппаратов большого объема (сотни и даже тысячи кубометров). Технологические требования к скорости теплоотвода очень жесткие из-за узкого температурного оптимума роста культуры, который укладывается обычно в интервал 2—3°. К сожалению, наиболее приемлемый на практике способ теплоотвода — охлаждение оборотной водой через змеевики, рубашки и другие устройства — осложняется в микробиологической промышленности очень малой разностью температур между содержимым биореактора (32—34°С для дрожжей andida) и охлаждающей водой, которая поступает в теплообменные устройства с градирни с температурой более 20°С, а в жаркое время года — и еще выше. Это заставляет создавать в биореакторе развитую поверхность теплообмена, постоянно бороться со шламообразованием и обрастанием поверхности теплообменных устройств, а также увеличивать скорости движения жидкостей у обеих поверхностей теплообменника за счет большого объема прокачиваемой внутри труб или рубашек охлаждающей воды и интенсивной циркуляции жидкости, находящейся в биореакторе. [c.21]

    Одно из выдающихся открытий последних лет — получение белка из углеводородов нефти, точнее из жидких нефтяных парафинов нормального строения, требует нового подхода к процессу карбамидной депарафинизации керосино-газойлевых фракций не только как к процессу, направленному на повышение качества топлив и масел, на получение сырья для производства СЖКи СЖС, но и как к процессу, позволяющему обеспечить, по существу, неограниченной сырьевой базой промышленность микробиологического синтеза. В связи с этим возникает необходимость проектирования и сооружения значительного количества высокопроизводительных установок карбамидной депарафинизации, имея в виду выделение мягкого парафина из всего количества прямогонных керосинов и дизельных топлив, вырабатываемых в стране [216]. [c.133]

    С целью поднятия производства продукции животноводства взя1 курс на развитие производства кормового микробиологического белка и белково-жировых веществ, кормовых витаминов и антибиотиков, ферментных препаратов, бактериальных удобрений и других продуктов микробиологического синтеза. [c.389]

    Определение аминокислот всегда представляло исключительно важную задачу биохимии ввиду того, что эти соединения играют роль кирпичиков при построении пептидов и белков. Широко применяемый, основанный на ионной хроматографии и теперь уже ставший классическим метод Мура и Штейна [1] не позволяет провести различие между энантиомерами. Между тем в хиральном аминокислотном анализе ощущается явная потребность так, например, в пептидном синтезе решающее значение может иметь оптическая чистота исходного материала, а результаты стереохимического анализа могут искажаться из-за рацемизации. Другой областью применения дгырдльного аминокислотного анализа является определение строения многих микробиологических продуктов, таких как полипептидные антибиотики, в состав которых входят о-аминокислоты, не обнаруженные у млекопитающих [2]. [c.173]

    В отличие от сложных белков, белки одноклеточных организмов (БОО) используются как пищевая добавка. Обогащением белковыми добавками на основе БОО улучшают качество растительного белка. Эти добавки повышают содержание витаминов, микроэлементов, а главное — аминокислот, несинтезируемых многими растениями. Производство пищевых белков измеряется миллионами тонн в год и постоянно растет. Микробиологический синтез белка, продукт которого представляет собой инактивированную массу клеток, — основной [c.429]

    Аминокислоты можно получать путем выделения из белковых гидролизатов, с использованием микробиологических методов, с помощью ферментативных методов или путем химического синтеза. Первые три подхода дают ь-аминокислоты, а при химическом синтезе получаются оь-соедине-ния, которые нужно еще разделить на оптические антиподы. До недавнего времени аминокислоты удавалось полущть только в очень малых количествах, но в последние годы их производство приняло индустриальные масштабы и в 1977 г. достигло 400 ООО т. Аминокислоты используются как вкусовые добавки в пищевой промышленности (глутамат натрия, аспарагиновая кислота, Щ1СТИН, глицин и аланин), как питательные растворы и терапевтические средства в медицине (все протеиногенные аминокислоты), как добавки для улучшения неполноценных питательных белков и фуража (лизин, метионин, триптофан), как промежуточные вещества в косметической промышленности (серин, треонин, цистеин), а также как исходные вещества для синтеза различных пептидов. [c.38]

    Техническая лактоза (РТУ РСФСР 761—64). Получают лактозу из молочной сыворотки после выделения белков, сгущения до концентрации сахаров 50 /о и кристаллизации. Лактозный сахар-сырец содержит не менее 927о сахара, не более 3% воды, 2% зольных веществ и 1 % молочной кислоты. Количество белка не регламентировано, но обычно оно не превышает 3%. Для нужд микробиологического синтеза иногда готовят сгущенный концентрат лактозы. [c.77]

    Разделение углеводородов и нефтяных фракций на цеолитах широко применяется как в препаративно-аналитических целях так и в промышленности. Адсорбцией на цеолите СаА из керосино-газойлевых фракций (200—320°С) выделяют н-алканы Сю —С18, которые используюг для микробиологического синтеза белков, а также для производства биологически разлагаемых моющих веществ. Адсорбция проводится, как правило в паровой фазе, так как в случае жидкофазного процесса трудно с достаточной полнотой отделить несорбируемые компоненты от слоя сорбента. При десорбции н-алканов в качестве вытеснителей используют аммиак, пентан, гексан. [c.94]

    Разработано несколько вариантов технологического процесса, в частности, с разделением стадии микробиологического синтеза золоторастворяющих соединений и последующего выщелачивания-Экономичными растворителями можно считать гидролизаты белков, содержащие смеси аминокислот. При выщелачивании золота растворами некоторых белков можно обходиться без добавок химических окислителей. [c.154]

    Способность живых организмов и самих молекул ДНК к размножению открыла широкую дорогу селекционным методам для решения биохимических задач. Возможность вырезания из ДНК определенных генов, получения их путем обратной транскрипции матричных РНК и разработка методов искусственного химикоферментативного синтеза генов позволили манипулировать генами, в том числе вставлять их в плазмиды или вирусы, а затем вносить их в микроорганизмы для последующего размножения. Микробиологические методы позволили разработать методы селекции тех популяций микроорганизмов (клонов), которые выросли из отдельных клеток несущих желаемые признаки, например способных продуцировать определенные белки, не свойственные этим организмам. Так родилась Г№ ная инженерия, которая не только открыла новые горизонты в биотехнологии, но и стала важнейшим инструментом биохимических исследований. [c.232]


Библиография для Белки синтез микробиологически: [c.95]    [c.226]   
Смотреть страницы где упоминается термин Белки синтез микробиологически: [c.255]    [c.151]    [c.50]    [c.76]    [c.254]    [c.46]    [c.212]    [c.71]    [c.268]    [c.271]    [c.212]   
Химический энциклопедический словарь (1983) -- [ c.342 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.342 ]




ПОИСК







© 2025 chem21.info Реклама на сайте