Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Сила тока приборы для измерения

    Развитие количественных методов анализа исторически тесно связано с созданием новой измерительной техники. Так, возможность разложения света в спектр обусловила появление разнообразных и чрезвычайно ценных оптических методов анализа, дальнейшая разработка которых продолжается и, в настоящее время. В свою очередь, применение этих методов в количественном анализе вызвало необходимость точных электрических способов измерения интенсивности светового потока. Изучение закономерностей электрических процессов и создание точных приборов для измерения силы тока и напряжения стало основой возникновения и развития электрохимических методов анализа. Затем появились термические методы, анализа, основанные на точном измерении температуры с помощью термоэлементов и термисторов, и радиохимические методы анализа, в которых осуществляется чувствительная регистрация радиоактивных излучений. [c.254]


    Обработка результатов измерений потенциалов и силы токов заключается в определении средних, максимальных и минимальных значений их за время измерения. Если измерения выполнены показывающими приборами с использованием стального электрода сравнения в зонах влияния блуждающих токов электротранспорта, то среднее положительное Л ср(+) и среднее отрицательное Л ср(-) значения измеренного параметра (потенциала или силы тока) определяют по формулам [c.64]

    Приборы и реактивы источник постоянного тока (выпрямитель), прибор для измерения силы тока, прибор для определения числа Фарадея, 5 %-ный раствор КОН. [c.71]

    При измерениях силы тока при Помощи прибора 2 вместо значения 1о Измеряется величина h- Здесь отклонение результата измерений (погрещность) уменьшается по мере уменьшения измеряемого напряжения Ui и соответственно увеличения угла наклона , т. е. с уменьшением внутреннего сопротивления. Это означает, что при измерениях силы тока прибор (амперметр) должен иметь возможно более Низкое внутреннее сопротивление, чтобы не повышалось суммарное сопротивление й цепи Тока и чтобы не изменялась измеряемая величина. Обычные приборы магнитоэлектрической системы имеют внутреннее сопротивление около 100 Ом на 1 мА ( 2=0,1 В) и вполне пригодны для измерений силы тока. Для меньших значений силы тока имеются и более высококачественные приборы с показателем 5 кОм на 1 мкА [c.82]

    Таким образом, в каждом термоэлектрическом пирометре имеется прибор для замера величины силы тока или измерения разности потенциалов. Такими приборами служат обычный указывающий гальванометр или более сложный регистрирующий прибор, включающий в себя гальванометр-потенциометр. [c.76]

    Для измерения силы тока прибор при помощи кнопки подключается параллельно шунту Вш, для измерения выпрямленного напряжения — последовательно добавочным сопротивлениям i dj и Rd - [c.118]

    Высота полярографической волны пропорциональна концентрации восстанавливающегося вещества, и поэтому ее измерение служит для количественных определений. Полярографический метод весьма чувствителен и позволяет проводить количественные определения вплоть до концентраций порядка 10- кмоль/м . Применяемые в настоящее время приборы — полярографы — автоматически увеличивают наложенное напряжение и одновременно записывают силу тока. Они получили широкое распространение в практике научных и производственных лабораторий. [c.271]


    Промышленные схемы потенциометров несколько сложнее, потому что в них необходимо обеспечить или строгое постоянство силы тока в реохорде, или точное его измерение, а также они должны удовлетворять ряду других требований, связанных с надежностью н точностью прибора. Автоматические потенциометры обеспечивают непрерывный без вмешательства человека контроль температуры повышенной точности и ее регулирование. [c.57]

    Блок измерения состоит из катодного вольтметра типа ОР-205 (или другого типа), моста переменного тока типа Р-568 и высокоомного многопредельного прибора для измерения силы тока в цепях постоянного тока. [c.215]

    Для определения плотности зарядов статического электричества используют гальванометры постоянного тока (микроамперметры, гальванометрические и электрометрические усилители). Шкалы этих приборов рассчитаны на измерение тока силой 20—30 мА и ниже. Высокочувствительные гальванометры позволяют измерить силу тока 10 —10 А. [c.176]

    Для измерения направления и силы тока в трубопроводах и обсадных колоннах скважин применяется метод падения напряжения. Измерительный прибор (милливольтметр или потенциометр) подключается к трубопроводу через катодные выводы или непосредственно к трубопроводу в шурфах или частях трубопровода, доступных с поверхности. [c.275]

    Так как потенциалы и токи могут изменяться первые - по значению и знаку, вторые - по силе и направлению, измерения проводят в течение длительного времени (за это время по рельсовой сети проходят два-три поезда в противоположных направлениях). При полном обследовании дренажной защиты ведут суточные измерения с помощью самопишущих приборов, принимая за результат средние значения измеренных величин по методике, изложенной ранее. Дополнительными, или сопутствующими, являются измерения потенциалов рельс - грунт (рис. 8,3, б) труба - рельс (рис. 8.3, в) сопротивления дренажной цепи (рис. 8.3, г) и стыков рельсов (рис. 8.3, )). [c.181]

    Пользуясь прибором для определения электропроводности, сравните электропроводность указанных кислот. Для этого возьмите децимолярный раствор каждой кислоты. Измерение силы тока производите при одинаковых условиях. Перед погружением электродов в каждый новый раствор ополаскивайте их дистиллированной водой. Напишите уравнения электролитической диссоциации каждой из четырех кислот, зная, что молекулы кислот диссоциируют на ион водорода и анион кислоты. [c.71]

    Подчинение этих процессов разным законам приводит к тому, что ток ДЭС затухает раньше фарадеевского (рис. 5.15,а). Это обстоятельство позволяет разделить ток двойного слоя и фарадеевский ток, проводя измерение в момент времени т, и исключить первый. Конечно, при этом приходится иметь дело с весьма малыми силами тока, но современные электронные схемы позволяют без особых искажений усилить малые токи до любых значений, необходимых для управления регистрирующим прибором, скажем, самописцем. [c.285]

    Ручки диапазон тока и измерение тока служат для регулирования чувствительности прибора в пределах от 0,1 до 1000 мкА и для измерения силы тока, проходящего через ячейку. [c.184]

    Типичная задача на синтез измерительной системы. Измерение, как и изменение, всегда связано с преобразованием энергии. Но в задачах на изменение необходимость преобразования энергии видна намного отчетливее, чем при решении задач на измерение. Поэтому при решении задачи 4.5 методом перебора вариантов даже не вспоминают о законе обеспечения сквозного прохода энергии. В эксперименте задача была предложена четырем заочникам, живущим в разных городах и только приступающим к изучению ТРИЗ. Результат выдвинуто 11 идей, правильного решения нет. Предложения характеризуются неопределенностью Может быть, острые и тупые кнопки отличаются по весу Тогда надо проверить возможность сортировки по весу... Четыре заочника второго года обучения дали правильные ответы, причем двое них отметили тривиальность задачи. В самом деле, если применять закон о сквозном проходе энергии, ясно, что энергия должна проходить сквозь основание кнопки и стерженек, а затем поступать на измерительный прибор. При этом между острием стерженька и входом измерительного прибора желательно иметь свободное лространство (воздушный промежуток), чтобы не затруднять движения кнопок . Цепь кнопка — острие стерженька — воздух — вход прибора может быть легко реализована, если энергия электрическая, и значительно труднее — при использовании других видов энергии. Следовательно, надо связать процесс с потоком электрической энергии в каких случаях ток зависит от степени заостренности стерженька, контактирующего с воздухом Такая постановка вопроса, в сущности, содержит и ответ на задачу надо использовать коронный разряд, сила тока в [c.65]

    Перед таблицей указывают тип и марку прибора, на котором проводились измерения, условия опыта (например, длину волны или силу тока и т.д.), а в самом отчете приводят принципиальную схему прибора с указанием его основных узлов. [c.14]


    Перед определением прибор заполняют жидкостью так, чтобы в порах диа- фрагмы 1 не оставалось воздуха и установилось постоянное положение мениска жидкости в левой части капиллярной трубки 5. После этого включают ток в таком направлении, чтобы мениск в капилляре 5 передвигался слева направо, и отсчитывают скорость его перемещения по секундомеру. Одновременно с помощью миллиамперметра, включенного в электрическую цепь прибора, измеряют -силу тока. Недостатком прибора является поляризация электродов и образование продуктов электролиза, которые могут проникать в капилляры диафрагмы и этим самым вносить ошибку в результаты измерения. [c.216]

    Требуется измерить количество электричества (постоянный ток), прошедшего через раствор или какой-либо прибор. В распоряжении имеются только точный амперметр и секундомер. Сила тока во времени изменяется. Как осуществить измерение количества электричества  [c.18]

    Так как сопротивление стеклянного электрода велико, то для измерения э. д. с. применяется высокочувствительная аппаратура, позволяюш,ая определить потенциал с точностью до 1 мВ при сопротивлении цепи порядка нескольких десятков и сотен мегом, т.е. при силе тока в цепи порядка 10 -г Ч- 10 А. Применяют приборы с чувствительными гальванометрами, электрометрами электромагнитных и электростатических систем. [c.421]

    Флуктуации делают невозможным измерение какой-либо величины с очень высокой степенью точности. Так, чтобы можно было обнаружить ток в цепи, сила его должна быть больше флуктуации силы тока. В настоящее время только в электрических приборах достигнута столь высокая степень точности, что флуктуации оказывают влияние на их работу ( ползание нуля гальванометра, дробный эффект в фотоэлементе и т. д.). [c.97]

    Проходящий через гальванометр 7 ток отклоняет зеркальце тем сильнее, чем больще сила тока. Отраженный зеркальцем луч света оставляет на фото бумаге тонкую линию, видимую после проявления. Таким образом прибор авто матически записывает вольт-амперную кривую вместе с рядом параллельно рас положенных вертикальных линий, расстояние между которыми равно 1 см, т. е соответствует увеличению напряжения на 0,1 (или на 0,2) в. На рис. 67 изобра жена полученная полярограмма и показан способ измерения высоты полярогра фической волны (отрезок h), по величине которой определяют концентрадию соответствующего иона в растворе. [c.454]

    Электрические методы измерения механических параметров. Для измерения механических параметров нпгроко используют электрические методы. Их преимущества — малая инерционность измерительных устройств, что особенно важно при изучении быстро протекающих процессов в машинах, высокая чувствительность, возможность дистанционного измерения, простота хранения и обработки информации. Система измерения в этом случае состоит из датчика, преобразующего измеряемый импульс в электрический сигнал, усилителя электрического сигнала (напряжения или силы тока), измерительного устройства, включающего регистрирующие приборы (различные самописцы или осциллографы). По нрннцину работы [c.20]

    Степень поляризации зависит от характера анодных и катодных участков, состава коррозио1шой среды и плотности коррозионного тока. Чем бо,1ьше наклон поляризационных кривых, тем сильнее поляризуется электрод и тем сильнее тормозится анодный или катодный процесс. Для снятия поляризационных кривых могут быть использованы разные схемы установок. Схема любой установки для снятия поляризационных кривых гальваностатическим способом подобна схеме для измерения электродных потенциалов компенсационным методом и отличается от нее по существу только тем, что она предусматривает подвод постоянного тока к исследуемому электроду и измерение его величины, т. е. включает источник постоянного тока, приборы для измерения силы тока и регулирования его величины и вспомогательный поляризующий электрод. Схема установки для снятия поляризационных кривых приведена на рис. 222. [c.342]

    Нефелометрический метод, основанный на сравнении прозрачности обводненного и обезвоженного эталонного масла, применим при равномерном диспергировании воды в масле, так как в противном случае возможны искажения вследствие неодинакового светорассеяния из-за полидисперсности микрокапель воды. Поэтому в приборах, основанных на указанном принципе, имеется эмульгатор для создания монодисперсной эмульсии воды в масле. Измерения проводят при помощи фотоэлементов, собранных по мостовой схеме сила тока пропорциональ на разности освещенностей рабочей и эталонной камер [c.38]

    ПepeнJЭ ный измерительный комплект К-50 имеет постоянно смонтированную схему и служит для измерений силы тока, напряжения и мощности в однофазных и трехфазных трехпроводных и четырехпроводных цепях переменного тока при равномерной и неравномерной нагрузке. В отдельном корпусе смонтирован блок трансформаторов тока типа И-508, предназначенный для расширения пределов измерения. Переносной измерительный комплект рассчитан для работы в закрытых помещениях при температуре окружающего воздуха от 10 до 35 °С и относительной влажности до 80%- Прибор соответствует классу точности [c.59]

    Далее устанавливают градуированные капилляры и проверяют герметичность ячейки. Если положение менисков жидкости в капиллярах не изменяется в течение 3—5 мин, это показывает, что прибор герметичен. Прибор подключают к источнику постоянного тока, включают тумблер сеть и по секундомеру измеряют время прохождени5[ мениска жидкости между делениями капилляра. По направлению д[и жe-ния жидкости через мембрану к тому или иному электроду определяют знак заряда частиц. Кроме того, по миллиамперметру фиксируют значение силы тока. Затем тумблер сеть выключают, изменяют полярность электродов переключателем полярности и снова проводят измерение. [c.98]

    Микроамиерметр М-252 предназначен для измерения силы тока в цепях постоянного тока с непосредственным отсчетом по шкале. Он представляет собой лабораторный прибор магнитоэлектрической системы, рассчитанный на эксплуатацию при температуре окружающей среды от -fio до +35°С и относительной влажности до 80%. [c.71]

    Прибор Н-399 - многопредельный переносной самопишущий милливольтамперметр со встроенным полупроводниковым усилителем, предназначенный для измерения и записи постоянных напряжений, а также блуждающих токов при температуре окружающего водуха от нуля до +50 С и относительной влажности до 95 % при 30 С. Питание прибора - от сети переменного тока или от источника постоянного тока (сухие элементы, аккумуляторные батареи) с преобразователем П-39 для привода двигателя, перемещающего диаграмму. Пределы измерений напряжения - от 0,001 до 100 В, силы тока - в зависимости от наружных шунтов от О до 500 А. Класс точности прибора 1,5. Габариты, мм - 230x180x315, масса - 10 кг. [c.73]

    Прибор Ф-431/2 - транзисторный ампервольтметр, предназначенный для измерения напряжения и силы тока в цепях постоянного и переменного тока. Достоинство прибора-возможность измерения силы переменного тока от десятых долей микроампера, широкий диапазон измеряемых величин, высокое входное сопротивление, малые габариты (115x215x90 мм) и масса (1,5 кг), питание от встроенной батареи. Прибор работает при температуре окружающего воздуха от +10 до +35 С и относительной влажности воздуха до 80 %. Пределы измерений прибора напряжения - от 0,ОМО 3 до 5-10"3 В, силы тока - от [c.73]

    Техническое оформление питания электролиза осуществляется, aiK упоминалось, посредством последовательного включения источника переменного тока в цепь постоянного. Измерение суммарной силы тока и напряженйя осуществляют с помощью тепловых электроизмерительных приборов. Величину суммарной силы тока подсчитывают исходя из равенства [c.251]

    Электронный прибор для измерения э.д.с. является, по существу, автоматизированным вариантом компенсационной схемы (рис. IX.21). В контур включены исследуемый элемент (э.д.с. Ех), усилитель и Сопротивление обратной связи Яос, на котором выходной ток усилителя создает напряжение Ек, почти точно равное измеряемому Е и обратное по знаку. Появление ничтожно малой разности потенциалов между точками А и В усилителя вызывает изменение выходного тока, приближающее эту разность к нулю. Поэтому сила тока через источник э.д.с. ничтожно мала или, другими словами, входное сопротивление / вх прибора, очень велико, так как оно определяется произведением входного сопротивления усилителя без обратной связи (обычно 10 —10 Ом) на коэффициент усиления (10 —10 Ом),. вх может быть порядка 10 Ом, а сила тока через источник э. д. с. 10- — 10- А. Ясно, что кос выполняет роль той части реохорда, которая компенсирует э.д.с., но тут реохорд питается изменяющимся пропорционально э.д.с. током. Компенсация происходит практически мгновенно при подключении э.д.с., шкала миллиамперметра оцифровывается в единицах напряжения или в пропорциональных ему единицах логарифма активности иона pH, рЫа. [c.561]

    Изобретение Эдисоном электрической лампочки и ее публичная демонстрация в декабре 1879 г. привели к большому спросу на электроэнергию для освещения жилых помещений. Одна из возникших при этом проблем заключалась в измерении количества электроэнергии, расходуемой каждым потребителем. Эдисон изобрел кулонометр (описанный в журнале Journal of hemi al Edu ation, vol. 49, p. 627, 1972), который мог работать на постоянном токе. На катоде кулонометра осаждался цинк. Каждый месяц катод извлекали из прибора и взвешивали, чтобы определить расход электроэнергии. Если масса катода увеличивалась на 1,62 г и через кулонометр проходил ток силой 35% от силы тока, поступающего в дом, то какое количество электричества (в кулонах) было израсходовано на освещение в этом доме за месяц  [c.243]

    Для измерения силы тока, проходящего через электролизер во время полярографирования, применяют зеркальный гальванометр с чувствительностью 10 а на 1 мм1м. Гальванометр установлен на кронштейне на высоте приблизительно 1,5 м от поверхност ) стола, на котором расположен полярограф. Зеркальная шкала гальванометра укрепляется на уровне глаз работающего так, чтобы луч света, отраженный от зеркальца гальванометра, падал на середину шкалы. Для понижения чувствительности гальванометра (при сравнительно больших концентрациях растворов анализируемых веществ) имеется шунт. Включение и установка его на определенную чувствительность проводится при помощи соответствующей ручки на панели прибора. [c.156]

    Измерение переменного тока. Здесь тлкнсе справедливы те же принципы, что и при измерении постоянных токов R л С + а)- Следует учитывать появление комплексного сопротивления 2 = / + // с,ь и использовать для цепи переменного тока расширенную форму закона Ома I = U/Z. Активные (/ ) и реактивные (R = (иЬ и = —1/аС) сопротивления, имеющиеся в цепи, складываются как векторы (рис. 4.3), поэтому измерительный прибор показывает результирующую силу тока. Как и при измерениях постоянного тока, следует стремиться к возможно меньшему внутреннему сопротивлению измерительного прибора, нижний предел которого ограничивается прямым сопротивлением применяемого детектора. При высоких частотах активное сопротивление Р увеличивается по сравнению с омическим сопротивлением (постояннотоковое сопротивление) вследствие скин-эффекта [А.2.3, А.2.5, А.2.9, А.2.11, А.2.13]. [c.446]

    Изучение кинетики электродных реакций связано с необходимостью записи различных переменных электрических величин и прежде всего силы тока и напряжения. Первые попытки таких измерений были осуществлены Ленцем в 1849 г. Он предложил способ измерения мгновенных значений этих величин. Идея Ленца вскоре была воплощена в конструкции так называемой шайбы Жубера. В 1891 г. была разработана первая конструкция шлейфового осциллографа. Этот прибор непрерывно совершенствовался, и в настоящее время, пользуясь им, мож1но измерять переменные токи с частотой до 20 кгц. [c.258]

    Ход выполнения работы состоит в следующем. Наиболее просто измерения перенапряжения осуществляются гальваностатическимметодом. Тогда применяют высоковольтный источник тока, соответственно вводя во внешнюю цепь для стабилизации силы тока большое сопротивление. Измерительная установка состоит из трехэлектродной электрохимической ячейки, потенциометра для измерения катодного потенц11ала и источника напряжения, подаваемого на ячейку с возможностью плавного увеличения силы тока в примерных границах от 10 до 10 Ысм , т. е. на три-четыре порядка. В соответствии с этим следует подбирать прибор для регистрации силы тока. Для разделения катодного и анодного отделения ячейки применяют сосуд, изображенный на рис. 105. В анодное отделение ячейки помещается платиновый вспомогательный электрод в виде пластинки или проволоки. В другое отделение вводится армированный в пластмассу катод с тщательно зачищенной и обезжиренной поверхностью порядка 1—2 см , к которой подводится кончик сифона электролитического ключа для контакта с электродом сравнения. Если в качестве последнего служит водородный электрод в том же растворе, то разность потенциалов между катодом и электродом сравнения непосредственно дает значения перенапряжения. [c.187]


Смотреть страницы где упоминается термин Сила тока приборы для измерения: [c.123]    [c.98]    [c.167]    [c.60]    [c.61]    [c.375]    [c.223]    [c.207]    [c.250]    [c.62]   
Современные электронные приборы и схемы в физико-химическом исследовании Издание 2 (1971) -- [ c.130 , c.135 ]




ПОИСК





Смотрите так же термины и статьи:

Измерение силы тока

Сила измерение



© 2024 chem21.info Реклама на сайте