Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический кинетику электродного процесса

    Возникновение скачка потенциала обусловлено обменом заряженными частицами между двумя фазами. При этом на границе их раздела возникает двойной электрический слой. Строение его отражается на скорости электродной реакции и поэтому учитывается при изучении кинетики электродных процессов. [c.98]

    В книге рассмотрены основные понятия электрохимии и современные методы исследования кинетики электродных процессов. Описаны классические и релаксационные методики изучения электродной поляризации. Представлены специальные и вспомогательные приборы, применяемые в электрохимических исследованиях. Уделено внимание особенностям лабораторного эксперимента. В задачах установлены закономерности фарадеевских реакций, электропроводности растворов, чисел переноса, э. д, с. элементов, электрокапиллярных явлений и строения двойного электрического слоя, диффузионной кинетики и полярографии, механизма образования на электродах новой фазы, пассивности и коррозии металлов. [c.2]


    Часто процессы электровосстановления анионов носят необратимый характер. Если стандартный потенциал окислительно-восстановительной системы соответствует значительному положительному заряду электрода, то процесс электровосстановления также может начаться при < >0 ( , =о)- Эти системы [к ним относятся системы (I) — (111)1 представляют наибольший интерес с точки зрения установления связей между строением двойного электрического слоя и кинетикой электродных процессов. В самом деле, именно при переходе через п. н. 3. происходит наиболее существенная перестройка двойного слоя, которая может оказать влияние как на скорость стадии разряда  [c.263]

    Уравнение (УП1.2) называется первым основным уравнением диффузионной кинетики. Оно связывает скорость электродного процесса с распределением концентрации вблизи поверхности электрода. Второе основное уравнение диффузионной кинетики электродных процессов — уравнение Нернста, которое справедливо при протекании электрического тока, так как само электродное равновесие при этом не нарушается. Неравновесным в условиях лнмитирующей стадии переноса оказывается некоторый слой раствора- (или слой амальгамы) вблизи поверхности электрода, в котором концентрация реагирующих веществ изменяется от значения С в объеме до с у поверхности (так называемый диффузионный слой, который следует отличать от диффузной части двойного слоя). Чтобы определить потенциал электрода при протекании тока, в уравнение Нернста подставляют концентрацию реагирующего вещества у поверхности электрода. Таким образом, если процесс идет на электроде 1-го рода, то [c.205]

    Строение двойного электрического слоя (д. э. с.) имеет большое значение в кинетике электродных процессов. Равновесные потенциалы не зависят от строения д. э. с. Это объясняется тем, что равновесные электродные потенциалы определяются химическими потенциалами атомов металла в глубине электрода и ионов металла в глубине раствора электролита. Скорость электрохимической реакции, ее механизм и влияние на нее различных факторов зависят от строения двойного электрического слоя. Двойной электрический слой может образоваться при обмене ионами между электродом и раствором электролита. Если химический потенциал ионов в растворе электролита больше, чем атомов в металле, то выделившиеся на поверхности электрода ионы притягивают к себе анионы из раствора. Одной обкладкой д. э.с. служат положительные заряды со стороны металла, другой обкладкой — отрицательные заряды анионов со стороны раствора. Наоборот, если химический потенциал атомов в металле больше химического потенциала его ионов в растворе, то. перешедшие из металла в раствор ионы притянутся к его поверхности избыточными электронами. При этом также об- разуется двойной электрический слой, но с противоположным расположением заряда. Обкладка д. э. с. со стороны металла заряжена отрицательно (избыточные электроны), а со стороны раствора электролита — положительно (катионы). [c.299]


    При изучении термодинамики электрохимических процессов достаточно знать, что изменение энергии электрохимического элемента полностью определяется химическими реакциями на электродах. Однако при изучении кинетических закономерностей необходимо также знать механизм электродных процессов. Изменения в строении двойного электрического слоя на электродах, которые не сказываются на равновесных значениях электродных потенциалов, влияют на скорости электрохимических реакций. Поэтому при изучении кинетики электродных процессов очень важно знать потенциалы нулевого заряда, а также молекулярное строение границы электрод — раствор. [c.536]

    В предыдущих разделах был выяснен физический смысл электродного потенциала, показана его связь со скачками потенциала на границах раздела фаз, рассмотрены условия возникновения скачка потенциала на границе электрод — электролит (основной составной части электродного потенциала) и разобрана зависимость его величины от состава раствора. При обсуждении механизма возникновения скачка потенциала на границе электрод — электролит было отмечено, что главной причиной его появления является обмен ионами между металлом электрода и раствором. Этот процесс протекает вначале (т. е. в момент создания контакта между металлом и раствором) в неэквивалентных количествах, что приводит к появлению зарядов разного знака по обе стороны границы раздела фаз и к появлению двойного электрического слоя. Однако ни структура последнего, ни распределение зарядов по обе стороны межфазной границы там не рассматривались. Строение двойного электрического слоя не имеет принципиального значения для величины равновесного электродного потенциала, который определяется изменением свободной энергии соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, включая и кинетику обмена ионами в равновесных условиях, определяя интенсивность этого обмена (величину тока обмена Г). Теория строения двойного электрического слоя служит поэтому как бы переходным звеном между электродным равновесием и электродной кинетикой. [c.227]

    Строение двойного электрического слоя не имеет значения для величины обратимого электродного потенциала, которая определяется изменением изобарно-изотермического потенциала соответствующей электрохимической реакции. В то же время строение двойного электрического слоя играет важную роль в кинетике электродных процессов, в том числе и в кинетике обмена ионами в равновесных условиях, характеризуя интенсивность этого обмена (величину тока обмена о). [c.157]

    Электродные процессы являются гетерогенными, и их кинетика зависит от электрических переменных, характеризующих условия на поверхности. Истинная скорость реакции пропорциональна току, и в качестве электрической переменной всегда выбирается потенциал электрода. Поэтому зависимость ток — потенциал характеризует кинетические закономерности. Кинетика электродных процессов изучалась с начала столетия, концепция перенапряжения была введена в 1899 году. Тафель предложил использовать кривые перенапряжение — логарифм плотности тока еще в 1905 году, но современные представления появились несколько позже. Они были впервые изложены Батлером в 1924 году. Эрдей-Груз и Фольмер (1930) первыми использовали коэффициент переноса при описании поляризационных кривых для частного случая — разряда иона водорода. В настоящее время этот коэффициент является общепринятым, поскольку таким образом можно интерпретировать экспериментальные данные, пренебрегая деталями структуры активированного состояния. Важность связи между структурой двойного слоя и кинетикой электродных процессов была констатирована Фрумкиным еще в 1933 году, и его первоначальная трактовка остается основой наших сегодняшних представлений. [c.13]

    Основными разделами электрохимии являются учение об электролитах, главным образом о водных растворах электролитов термодинамика электродных процессов, т. е. учение об электрохимических равновесиях на поверхности раздела, и кинетика электродных процессов, т. е. учение о скоростях процессов, происходящих на поверхности раздела фаз при участии двойного электрического слоя. [c.360]

    Так, следует отметить, что современные теории двойного электрического слоя носят феноменологический и полуэмпирический характер. Вместе с тем уже накопился значительный экспериментальный материал, объяснение которого требует рассмотрения структуры поверхности на молекулярном уровне. Такой подход необходим для более детального описания адсорбции органических веществ на электродах, а также для объяснения ряда особенностей структуры поверхностного слоя и в отсутствие органических веществ. Попытки создания молекулярных теорий двойного слоя уже предпринимались. Однако эти теории еще далеки от совершенства. Другой важной проблемой является построение количественной теории поверхностного слоя при хемосорбции ионов, сопровождающейся переносом заряда. Явления переноса заряда при адсорбции широко распространены и играют существенную роль в кинетике электродных процессов. Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.389]


    Электродные процессы происходят в пределах тонкого поверхностного слоя на границе электрод — ионная система, где образуется так называемый двойной электрический слой. Поэтому механизм электродных процессов не может быть выяснен без знания структуры этого слоя. Это обстоятельство оправдывает детальное рассмотрение структуры заряженных межфазных границ в курсе кинетики электродных процессов. [c.7]

    Из-за отмеченных выше недостатков и невысокой точности измерения при низких концентрациях (< 10 моль/л) хронопотенциометрия находит ограниченное применение в решении аналитических задач. В аналитической практике она применяется в тех же целях, что и полярография, но более редко. В то же время она широко используется в исследовательских целях для изучения кинетики электродных процессов. Для этого, в частности, с успехом применяется импульсный гальваностатический метод с регистрацией зависимости E(t) в течение коротких промежутков времени (< 10 с) после включения токов большой плотности. Чтобы уменьшить время, затрачиваемое на заряжение двойного электрического слоя, используют двухимпульсный гальваностатический режим вначале на электрод подают импульс тока i большой амплитуды длительностью 1-2 мкс, который заряжает двойной слой, а затем ток мгновенно уменьшают до величины /2. [c.395]

    Часто на поверхности электрода находится хемосорбированный кислород (или кислород в другой форме), который сильно влияет на строение поверхностного слоя и скорость электрохимических процессов. Поэтому количественное исследование строения двойного электрического слоя и электрохимической кинетики на окисленных поверхностях представляет собой одну из важнейших проблем кинетики электродных процессов. [c.403]

    В последнее время был получен обширный экспериментальный материал по электрохимическим и химическим свойствам хемосорбционных слоев на металлах. При этом были использованы измерения адсорбционных потенциалов, применены радиоактивные индикаторы и другие методы, позволяющие определить влияние адсорбционных слоев на кинетику электродных процессов. Так, например, было установлено, что адсорбция йода на платине сопровождается значительным проникновением его в глубь металла. Поскольку связь между металлом и адсорбированными атомами имеет дипольный характер, образование атомных слоев приводит к нарушению строения двойного электрического слоя вплоть до изменения знака потенциала. Характерно также заметное снижение емкости двойного слоя, вызванное созданием адсорбционных слоев. [c.348]

    Выше мы предполагали, что при протекании электрохимической реакции лимитирующей является либо стадия массопереноса, либо стадия разряда—ионизации. В реальных условиях кинетика электродных процессов всегда в той или иной степени зависит от скорости обеих этих стадий. В связи с этим рассмотрим протекание электрохимической реакции (А) в условиях смешанной кинетики, когда ф определяется одновременно и скоростью массопереноса веществ Ох и Red, и скоростью перехода электронов через границу электрод/растВор. Отличие см от i и I M от i связано только с тем, что в условиях смешанной кинетики (токи i и i<. ) концентрации веществ Ох и Red на обращенной к раствору границе ионного двойного слоя и не равны сЬж. и fted- Если толщина двойного электрического слоя значительно меньше толщины диффузионного слоя, то в стационарных условиях можно использовать следующие приближенные формулы  [c.220]

    Скачок потенциала в диффузной части двойного электрического слоя называется 1-потенциалом (пси-прим-потенциалом). Он имеет важное значение для понимания строения двойного электрического слоя и позволяет объяснить многие особенности кинетики электродных процессов. Обычно за /1-потенциал принимают среднее значение потенциала на расстоянии одного ионного радиуса от поверхности электрода относительно потенциала в объеме раствора. С увеличением концентрации электролита ионы приближаются к поверхности электрода и большая их часть переходит из диффузного слоя в плотный. При этом /1-потенциал уменьшается, а скачок потенциала в плотном слое (Е - у /]) увеличивается (рис. 4.2, в). В растворах с концентрацией ионов 0,1 - 1,0 моль/л диффузный слой и /1-потенциал практически равны нулю. При этом строение двойного электрического слоя приближается к модели, предложенной Гельмгольцем. [c.129]

    В книге рассматриваются электродные процессы, осложненные приэлектродными химическими реакциями и адсорбционными явлениями. В полярографии подобным процессам соответствуют кинетические и каталитические волны. Особое внимание уделено механизму и кинетике процессов, включающих реакцию протонизации. Такого рода электродные цроцессы характерны для электровосстановления органических веществ. Рассмотрено влияние строений двойного электрического слоя и адсорбции компонентов реакции на кинетику электродных процессов. Показано, как из полярографических данных могут быть вычислены константы скорости быстрых протолитических реакций. [c.2]

    Строение двойного электрического слоя. Определите его роль в возникновении скачка потенциала на границе металл-раствор и влияние на кинетику электродных процессов. [c.117]

    Одной из основных задач теоретической химии и, в частности, физической органической химии является установление механизма реакций и оценка реакционной способности в ряду сходно построенных соединений. Среди различных типов химических реакций особое место занимают электрохимические процессы. Они, как известно, протекают в пределах тонкого слоя на границе раздела электрод—раствор и в общем случае включают в себя ряд стадий стадию доставки электрохимически активной формы в зону реакции (диффузия, предшествующие химические реакции), взаимодействие с поверхностью электрода (адсорбция, ориентация реакционного центра по отношению к поверхности электрода и т. п.), стадию переноса заряда, последующие химические и электрохимические превращения первичных продуктов электродной реакции и т. д. Строгий анализ столь сложного процесса встречает большие затруднения и пока вряд ли возможен. Однако при благоприятных условиях удается существенно упростить процесс и получить информацию об отдельных его стадиях. Значительный прогресс достигнут в понимании роли предшествующих реакций протонизации, в представлениях о механизме и кинетике каталитических реакций, адсорбции, о влиянии строения двойного электрического слоя на кинетику электродных процессов. Однако имеется сравнительно мало данных о процессах с последующими химическими стадиями. Между тем влияние этих реакций на кинетику процесса в целом и природу образующихся стабильных продуктов трудно переоценить. Более того, невозможно глубокое понимание механизма электродного процесса без учета химизма и кинетики последующих реакций. [c.138]

    Существенное влияние на кинетику электродных процессов оказывает также поверхностное натяжение раствора. Чем оно выше, тем больше его воздействие на двойной электрический слой. [c.49]

    В начале этой главы уже говорилось, что на связь между кинетикой электродных процессов и строением двойного электрического слоя было указано Фрумкиным еще в 1933 году. С тех пор этот вопрос интенсивно исследовался Фрумкиным и его школой, и только приблизительно с 1958 года внимание других исследователей было обращено на эту особенно важную проблему кинетики электродных процессов. Разумеется существовала некоторая неосведомленность о связи между кинетикой электродных процессов и строением двойного слоя, но часто совершенно неоправданно считалось, что вопрос этот не существенен в том случае, когда имеется избыток индифферентного электролита. Могут быть рассмотрены четыре основных случая, соответствующих следующим условиям наличие специфической адсорбции индифферентного электролита или реагирующего вещества в отдельности или вместе с продуктом реакции. Для всех четырех случаев количественная интерпретация невозможна. Прогресс был относительно медленным даже для случаев, когда не наблюдалось специфической адсорбции, так как не было де-таль.та представлений и точных данных о двойном слое. [c.17]

    Наблюдения за такими изменениями потенциала оказываются, как мы увидим далее, чрезвычайно важными при определении скорости собственно электрохимической стадии разряда. На основе современной теории двойного электрического слоя электрохимики могут не только количественно объяснять различные свойства двойного слоя, но и рассчитывать с помощью экспериментальных данных, например данных о емкости электрода, значения 1-потенциалов, столь необходимые для истолкования кинетики электродных процессов. Это и есть главное научное применение теории двойного электрического слоя, [c.81]

    При замене воды органическим растворителем изменяется вязкость среды, что влечет за собой изменение коэффициента диффузии изменяется период капания ртути, что в известной мере тоже оказывает влияние на потенциалы полуволн. Органические растворители влияют на строение двойного электрического слоя, а -ЭТО сказывается на кинетике электродных процессов. [c.230]

    Если сумма скачков потенциала в рассмотренных четырех двойных электрических слоях равна нулю, то на поверхности металла имеется так н зываемый абсолютный нуль потенциала. Потенциалы, вычпсленныг по отношению к этому нулю, называются абсолютными потенциалами. Абсолютный нуль потенциала не может быть вычислен теоретически или определен экспериментально. Однако, как выяснилось, нет необходимости знать абсолютные значения потенциалов. Для термодинамических расчетов достаточно знать условные равновесные потенциалы, измеренные по отношению-к стандартному водородному электроду. Для исследования кинетики электродных процессов должен быть известен условный потенциал по отношению к так называемому потенциалу нулевого заряда, который для каждого металла и растворителя имеет определенное значение. [c.300]

    Электродные процессы происходят в пределах тонкого поверхностного слоя на границе электрод — ионная система, где образуется так называемый двойной электрический слой. Поэтому механизм электродных процессов не может быть выяснен без знания структуры этого слоя. Это обстоятельство оправдывает детальное рассмотрение структуры заряженных межфазных границ в курсе кинетики электродных процессов. Построение теории двойного электрического слоя и электрохимической кинетики основывается на достижениях статистической физики, квантовой механики, теории адсорбции, теории твердого тела и других разделов теоретической физики и химии. Поэтому в настоящее время теория электрохимических процессов сделалась одним из наиболее математизированных разделов химической науки. Экспериментальное исследование строения границы раздела электрод—ионная система и возникающих на этой границе явлений во все возрастающем объеме требует использования возможностей современной электронной техники, оптики, электронографии. Впитывая достижения современной науки и техники и сохраняя свои традиционные позиции, электрохимия вместе с тем прокладывает себе путь в области кибернетики, проблем сохранения чистоты окружающей среды, молекулярной биологии. [c.7]

    Развитие электрохимической кинетики стало возможным в значительной мере в результате успехов, достигнутых в познании строения границы раздела электрод — раствор. Теория двойного электрического слоя начала развиваться значительно раньше современного направления электрохимической кинетики и к моменту возникновения последнего достигла уже известного совершенства благодаря работам Г. Гельмгольца, Ж- Гуи, Д. Чапмена и О. Штерна. Фрумкин развил термодинамическую теорию поверхностных явлений на границе раздела фаз и теорию двойного слоя при адсорбции органических соединений (1919—1926) и ввел в электрохимию понятие о потенциале нулевого заряда двойного слоя, который является фундаментальной характеристикой металла (1928). В 1933 г. Фрумкин показал, что учет строения двойного слоя необходим для понимания кинетики электродных процессов, так как поле двойного слоя влияет на концентрацию реагирующего вещества у поверхности электрода и на энергию активации процесса. Так была установлена количественная взаимосвязь между двумя главными направлениями современной электрохимии и начался современный этап развития кинетики электродных процессов. [c.11]

    Такое действие электрического двойного слоя было названо динамическим г( 1-эффектом его влияние на кинетику электродных процессов теоретически рассмотрено Левичем [188]. До сих пор, однако, нет никаких сведений об его экспериментальной проверке. Все прочие эффекты, обусловленные падением потенциала в диффузной части двойного слоя, Гирст назвал статическим г 11-эффектом. [c.330]

    Влияние строения двойного слоя на кинетику электрохимических процессов впервые было принято во внимание А. Н. Фрумкиным при построении теории замедленного разряда и водородного перенапряжения [7, 8, 551]. В дальнейшем представления Фрумкина были плодотворно использованы им и его сотрудниками для объяснения явлений при электрохимическом восстановлении кислорода [552], анионов [463—466, 551—559] и ряда нейтральных веш еств. В последнее время идеи Фрумкина получили широкое распространение среди электрохимиков (см., например, [420,560-562]) появился ряд работ, в которых было рассмотрено влияние строения двойного слоя на электродные процессы, ограниченные скоростью предшествующих химических реакций [563—569]. Строение двойного электрического слоя и его влияние на кинетику электродных процессов изложены в ряде обзоров, из которых в первую очередь следует отметить прекрасные обзоры Б. Б. Дамаскина [570], Р. Парсонса [571], а также Г. Нюрнберга и М. Штак-кельберга [572]. [c.135]

    Наибольший интерес представляют главы, в которых обсуждается влияние строения двойного электрического слоя, адсорбции ионов и нейтральных молекул, адсорбции и хемосорбцпи реагирующих веществ и продуктов реакции на кинетику электродных процессов. [c.4]

    Приведем несколько основных ссылок с краткими комментариями. Можно упомянуть только последние руководства по электрохимии [7—10], два из них [9, 10] дают лишь элементарное введение по вопросу о двойном электрическом слое и кинетике электродных процессов. Второе издание книги Кортюма [7] является наиболее полным руководством по электрохимии. Не существует монографии по двойному электрическому слою, однако по этому вопросу имеются прекрасные обзоры. Изданы две книги по кинетике электродных процессов [11, 12], а в книге Фишера [13] по электроосаждению металлов также есть довольно подробное введение, посвященное этому вопросу. Книга Фрумкина, Багоцкого, Иофа и Кабанова в течение десятилетия была единственным пособием по кинетике электродных процессов. Она достаточно детально освещала проблему, однако без подавляющих подробностей к сожалению, она не была переведена на западные языки. Монография Феттера [12] является прекрасной по своей всеобъемлемости, и она по праву должна занимать место в каждой электрохимической библиотеке [c.21]

    Основные научные исследования посвящены электрохимии. Изучал (1925—1934) закономерности совместного разряда катионов многих металлов, установил количественную зависимость выхода по току от условий электролиза. Исследовал (1934—1943) кинетику электродных процессов и строение двойного электрического слоя, впервые применив струйчатый ртутный электрод. Совместно с сотрудником Б. Ф. Марковым экспериментально установил необходимость введения дополнительного коэффициента в уравнение, выражающее зависимость потенциала нулевого заряда от концентрации электролита, что указывает на дискретность зарядов в ионной обкладке двойного электрического слоя (эффект Есина—Маркова). Изучал (1943—1956) ионную структуру жидких металлургических щлаков и штейнов и электрохимическую природу взаимодействия их с металлическими расплавами. Предложил гипотезу о знакопеременном многослойном строении ионной обкладки двойного электрического слоя. [c.186]

    Большое значение для развития полярографического анализа в СССР имеет тот факт, что в нашей стране сложилась крупнейшая школа электрохимия, созданная А. Н. Фрумкиным. Фундаментальные исследования этой школы в области двойного электрического слоя, кинетики электродных процессов и др. оказали и оказывают стимулирующее влияние на работы полярографистов-аналитиков. [c.54]

    Описанные закономерности влияния анионов присущи не только индиевому электроду, а носят, по-видимому, более обилий характер. Например, глубокая аналогия с индием обнаруживается при изучении влияния галогениД-ионов на кинетику электродных процессов в случае амальгамного цинкового электрода. Как и в случае индия, наблюдается ускоряющее действие галогенид-ионов, с которыми ионы цинка также образуют непрочные комплексы [92], на электродные процессы на амальгаме цинка i[i206, 206]. При этом, как и в случае индия, частицы цинка не адсорбируются на поверхности ртути из йодидных растворов [i207, 208], а ускоряющее действие йо-дид-ионов нельзя объяснить только за счет изменения строения двойного электрического слоя. Даже после количественного учета изменения величины г1)1-потенциала с концентрацией йодид-ионов логарифм исправленной константы скорости [c.77]


Смотреть страницы где упоминается термин Двойной электрический кинетику электродного процесса: [c.119]    [c.119]    [c.2]    [c.119]    [c.21]    [c.126]    [c.237]   
Основы полярографии (1965) -- [ c.193 , c.208 , c.209 ]




ПОИСК





Смотрите так же термины и статьи:

Двойной электрический

Кинетика процессов

Процесс электродные

Электродные кинетика

Электродный процесс Процесс электродный



© 2024 chem21.info Реклама на сайте