Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Контроль при повышенной температуре

    При внедрении автоматических систем предупреждения аварийных ситуаций допускается другая крайность. Бывают случаи когда особенно осторожные конструкторы отдельных агрегатов предусматривают в проектах множество блокировок по различным параметрам работы агрегата, не учитывая надежность средств контроля и автоматики и последствия, которые могут выявиться при внезапной остановке данного агрегата, непосредственно связанного с технологическим процессом. Известно, что каждое средство контроля и автоматики (датчик, преобразователь, реле и т. п.) имеет определенные показатели надежности работы и при увеличении числа блокировочных параметров, а следовательно и средств КИПиА, возрастает вероятность ложного срабатывания блокировки вследствие отказа какого-нибудь элемента схемы. При проектировании технологических процессов этот фактор надежности систем противоаварийной защиты необходимо учитывать. Нельзя забывать, что каждый агрегат на технологической установке — это неотъемлемая часть процесса, и, пытаясь, например, не допускать повышения температуры подшипника компрессора при помощи недостаточно надежных приборов, можно вывести из строя дорогостоящий катализатор или нагревательную печь. [c.29]


    Окись этилена является эпоксидом, наиболее часто употребляемым в этих синтезах. Она применяется для синтеза первичных спиртов, труднодоступных другим нутом. Желаемая реакция протекает не очень легко и для ускорения требует избытка окиси этилена (второго моля) или же повышения температуры процесса. В этих условиях, однако, реакция может стать чрезмерно бурной и выйти из-под контроля экспериментатора. [c.401]

    Давление насыщенных паров нефти и нефтепродуктов - один из важнейших показателей, характеризующих не только их качество, но и безопасность при транспортировании и переработке. Давление насыщенного пара является очень важным показателем для автомобильных и авиационных топлив, влияющим на запуск и прогрев двигателя и образование паровых пробок при работе двигателя при повышенных температурах и на больших высотах. Предельное максимальное давление насыщенного пара бензина устанавливается в некоторых регионах при проведении контроля загрязнения воздушной среды. Давление насыщенного пара используется также как показатель скорости испарения летучих нефтяных растворителей при подсчете потерь нефти и нефтепродуктов от испарения. [c.249]

    Для поддержания необходимого температурного режима процесса гидрирования подбирают скорость парогазовой смеси в аппарате и высоту слоя катализатора такими, чтобы не происходило чрезмерного перегрева реагирующих веществ. Для регулирования температуры при газофазном гидрировании применяют большой избыток водорода по сравнению с теоретически необходимым. Он составляет в различных процессах от 5 1 до (20—30) 1. Избыточный водород аккумулирует выделяющееся тепло, предотвращая чрезмерный перегрев реакционной массы. При выходе из-под контроля экзотермических реакций происходит резкое повышение температуры, что может привести к аварии. Описан случай разрушения колонны синтеза изобутилового спирта из окиси углерода и водорода. [c.333]

    Теплоту смачивания определяют для систем с развитой поверхностью (порошков и пористых тел). В расчете на 1 см поверхности она обычно находится в пределах от 2-10 2 до 2 10 Дж/см , хотя могут иметь место значительные колебания. Один из ранее практиковавшихся методов определения теплоты смачивания состоит в определении повышения уровня жидкости, расширяющейся при выделении теплоты смачивания, с одновременным контролем повышения температуры. [c.176]

    При применении любого метода можно установить, что для данного исходного угля электрическое сопротивление, измеряемое при температуре окружающей среды, при повышении температуры коксования Б диапазоне 500—900° С уменьшается чрезвычайно быстро (коэффициент 10 для увеличения температуры на 30—50° С) и значительно медленнее при температуре выше 1000° С. На этом принципе предложен контроль степени готовности среднетемпературных коксов [191. [c.131]


    Тепло, выделяющееся во время реакции, должно быстро и эффективно отводиться, чтобы избежать резкого возрастания скорости метано-образования и дезактивации катализатора при повышении температуры. Действительно, большинство технологических проблем, возникающих при проектировании процесса и его технологическом оформлении, связано с отводом тепла и контролем за реакционной температурой. [c.520]

    В отличие от методов определения фактических смол в бензине существуют методы определения так называемых потенциальных смол. Эти методы служат для определения содержания в бензине смолистых веществ после того, как бензин окислится до какой-то определенной степени. Иными словами, эти методы характеризуют потенциальные возможности бензинов в образовании смолистых веществ при окислении. Одним из наиболее распространенных методов определения потенциальных смол в бензине является метод медной чашки , получивший широкое распространение в зарубежной практике контроля качества автомобильных бензинов. Метод состоит в окислении и испарении образца бензина в медной чашке при повышенных температурах. Медь каталитически ускоряет окисление бензина, и за короткое время удается оценить склонность бензина к образованию смолистых веществ в процессе окисления. [c.222]

    Из рисунка видно, что при температурах, меньших 250°С, степень превращения будет ничтожно мала. Между 250 и 290°С степень превращения увеличивается и достигает 25%> а между 290 и 310°С она растет настолько быстро, что необходим тщательный контроль температуры. При дальнейшем повышении температуры [c.134]

    При повышении температуры хладоагента до 105°С (прямая смещается параллельно самой себе) равенство выделяющегося и отводимого тепла достигается при температуре 125°С. Эта точка является неустойчивой, так как выше нее кривая Qg идет круче, чем Qi% Следовательно, в этом случае необходим более жесткий контроль температуры, чем при диаметре труб 1 дюйм. [c.279]

    Автоматическая установка предупреждения пожара в экзотер,-мическом реакторе (рис. 39) позволяет остановить процесс при повышении температуры реакции до заданного предела и, следовательно, предупредить опасность возникновения пожара. Технологическая система автоматического контроля реакции включает и выключает подачу компонентов в реактор, а также выключает реактор при аварийных ситуациях. [c.86]

    Для контроля правильности н безопасности ведения технологического процесса кроме автоматических блокировок предусматривается световая и звуковая сигнализация отклонений ряда параметров. Основными из них являются 1) уменьшение расхода стабильного гидрогенизата перед подаче й в печь до 25% от номинала 2) уменьшение расхода стабильного гидрогенизата перед подачей в блок риформннга до 40% от номинала 3) повышение температуры газосырьевой смеси в верхнем слое катализатора гидроочистки (обычно это температуры 500—540 °С) 4) повышение температуры газосырьевон смеси на выходе из реакторов риформинга выше 525 °С 5) повышение давления в отпарной колонне 6) повышение и понижение уровня жидкости в ректификационных колоннах, емкостях различного назначения и сепараторах 7) понижения давления воздуха КИП. [c.229]

    При эксплуатации компрессоров необходимо вести тщательный контроль за температурным режимом работающих агрегатов, не допуская их перегрева. Температу-тура отходящей охлаждающей воды в холодильниках не должна превышать 30—35 °С. Необходимо также следить за температурой масла в компрессоре, обеспечивать регулярную смазку трущихся частей. Компрессор должен быть оборудован системой автоматического отключения на случай падения давления в системе смазки, повышения температуры и давления сжимаемого агента, прекращения подачи охлаждающей воды и падения давления на приеме. [c.49]

    В этот период постоянно осуществляется контроль температур в реакторах. В реакторах наблюдается зона повышенных температур, которая последовательно передвигается в реакторе сверху вниз,. , - .  [c.196]

    При достижении определенной температуры, зависящей от чистоты продукта, происходило расплавление навески продукта, а при дальнейшем повышении температуры — испарение-сублимация, при которой на поверхности пробирки, холодильника, пластин и термометра оседали кристаллы. Продолжительность опыта составляла 4 ч. Такое время было выбрано с целью обеспечения условий испарения-сублимации и конденсации-осаждения всех компонентов навески продукта. Для контроля возможных потерь легколетучих продуктов все детали, на которых находился конденсат-сублимат, взвешивали до и после опыта. После опыта пластинки подвергали внешнему осмотру, затем изучали под микроскопом. Одну из пластин фотографировали через микроскоп и устанавливали снова на следующий 4-часовой опыт со свежей пластинкой для выяснения возможных [c.103]


    При гидрировании проводится непрерывный контроль температуры. При снижении температуры ниже требуемой скорость гидрирования падает и в растворе ксилита остается значительное количество углеводов. Повышение температуры выше 130°С вызывает карамелизацию углеводов, что блокирует поверхность катализатора и приводит к прекращению гидрирования. Гидрируемый раствор приобретает темную окраску, запах карамели и становится непригодным для дальнейшей переработки. При слабой карамелизации катализатор в реакторах отмывают горячим конденсатом, регенерируют раствором щелочи и снова используют для гидрирования. В случае сильной карамелизации катализатор выгружают из реактора, подвергают специальной очистке и повторно активируют. [c.157]

    В условиях заводского контроля длительность определения по описываемому способу (3 часа) затрудняет производство отдельных операций. Поэтому были предприняты попытки к ускорению испытания путем повышения температуры реакции анализируемого продукта и медной пластинки. [c.387]

    Для контроля за составом топлив недавно утверждены стандарты на определение содержания выносителя в бензинах (ГОСТ 6073—75), интенсивности окраски этилированных бензинов (ГОСТ 20924—75) и др. Для оценки новых показателей эксплуатационных свойств служат методы ГОСТ 18597—73, предназначенный для оценки коррозионных свойств топлив в условиях конденсации воды (защитных свойств), ГОСТ 20449—75 — для оценки коррозионных свойств при повышенных температурах (см. гл. II) и некоторые другие. Стандартизованы также новые методы определения физической стабильности бензинов (потерь от испарения) — ГОСТ 6369—75, химической стабильности бензинов (в условиях хранения) — ГОСТ 22054—76. [c.225]

    Согласно записям, приведенным в табл. 3, после И ч 20 мин начала повышаться температура верха колонны. По производственной инструкции оператор должен проверять показатели технологического режима 4 раза в час. Фактически же между двумя последними проверками (в 10 ч 27 мин н в 12 ч 04 мин) прошло 97 мин. Вследствие нарушения установленной периодичности контроля оператор своевременно не заметил тенденции к повышению температуры верха колонны и потому принял меры к выправлению режима только после контрольной операции, выполненной в 12 ч 04 мин. [c.51]

    По причинам, изложенным выше, а-изомер протонируется, а следовательно, и десульфируется также легче -изомера. Поэтому при проведении реакции в условиях термодинамического контроля (длительное нагревание при повышенных температурах) из первоначально образовавшегося а-изомера будет образовываться более термодинамически устойчивый -изомер. [c.366]

    Регенерацию проводят в условиях ограниченной влажности и с защитой компрессоров от хлора. Поэтому в схему регенерации включают заранее высушенные адсорберы, заполненные цеолитом ЫаА. Включают компрессор и обеспечивают циркуляцию на инертном газе (азоте), поднимают температуру на входе в реакторы до 250-270°С и начинают подачу воздуха в первый реактор, доводят концентрацию кислорода в подаваемой азото-воздушной смеси до 0,5-0,6% об. Через несколько часов горения кокса на катализаторе доводят концентрацию кислорода до 11% об. и выжигают основную массу кокса при температуре от 300 до 400°С. На этой стадии воздух подают во все реакторы для ускорения выжига кокса. Контроль за процессом горения осуществляют с помощью зонных термопар, не допуская резкого повышения температур в слое катализатора, а также с помощью аналитического контроля за содержанием кислорода и углекислого газа на входе и выходе из реакторов. [c.140]

    В настоящее время препаративные газовые хроматографы выпускает наряду с аналитическими хроматографами приборостроительная промышленность. Как и в аналитических приборах, в них применяются проявительный способ разделения. Но они существенно отличаются от аналитических приборов по характеру, конструкции и назначению отдельных узлов. Прежде всего, как уже сказано, отличие состоит в применении хроматографических колонок намного большего диаметра. Далее, детектор играет вспомогательную роль, так как перед ним ставится ограниченная задача контроля за качеством разделения. Он автоматически переключает поток газа нз колонки в Конденсационную ловушку во время отбора продуктов разделения. Переключается поток во время конденсации каждого пика по программе, задаваемой экспериментатором, с помощью электромеханических или электронных устройств. Конденсация происходит в специальных ловушках, погруженных в сосуд Дьюара с жидким азотом или охладительной смеси из твердой двуокиси углерода и ацетона. Если разделяют высококипящие вещества, ловушки можно охлаждать проточной водой. При разделении газообразных веществ, например углеводородных газов, целесообразно ловушки наполнять адсорбентом. Адсорбированные целевые продукты разделения потом десорбируют при повышенной температуре, газы конденсируют в стальные баллончики, погру- [c.213]

    Катализатор риформинга, сниаивпшй активность в результате закоксовыва ния, подвергают окислительной регенерации. Регенерацию проводят смесью инертного газа с кислородом [содержание кислорода 0,5—0,6% (иол.)] при давлении 0,7—2,0 МПа и ступенчатом подъеме температуры. При температуре 250— 300 °С происходит, в основном, горение адсорбированных катализатором легки углеводородов. При 400—450 С выгорает кокс. По завершенин выгорания основной массы углистых отложений содержание кислорода в инертном газе увеличивают до 1—1,5% (мол.) и прокаливают катализатор при температуре 480—500 °С Контроль за ходом регенерации осуществляют, регулируя содержание кислорода в газе на входе в систему и измеряя его концентрацию на выходе иэ нее. Кроме того, ведется наблюдение за перепадом температуры ва катализаторе и перемещением зоны повышенных температур по слою катализатора. Регенерация считается законченной, когда концентрация кислорода в газе регенерации на выходе нз последнего реактора риформинга равна концентрации кислорода в газе на входе в систему. [c.166]

    Система программирования характеризуется диапазоном скоростей повышения температуры и их погрешностью. Обычно диапазон скоростей нагрева составляет от 0,5 до 25, иногда до 40 ""С/мин, однако скорости больше 15—20 °С/мин не используются из-за существенного и не поддающегося непосредственному контролю отставания температуры насадочных колонок от заданного закона повышения температуры вследствие плохой теплопроводности сорбентов. [c.79]

    Кислород воздуха—наиболее дешевый окислитель, нашедший широкое применение в технологических процессах. Однако окисление кислородом воздуха сопряжено с трудностями, связанными с контролем процесса, часто протекающего в различных, направлениях. Окисление проводят при повышенной температуре в присутствии катализаторов (солей церия, кобальта, меди, марганца, ванадия, урана и железа). Иногда окисление проводят при повышенной температуре в газовой фазе, при атмосферном или повышенном давлении. [c.665]

    В АВТ параметр теплоотвода приблизительно постоянен по длине трубок. Скорость же процесса и, следовательно, интенсивность тепловыделения сильно меняются по мере протекания реакции, особенно до полного расходования реагентов. Это может привести к тому, что конечные по ходу движения газа участки катализатора охлаждаются и скорость процесса в конце резко уменьшается. По этой причине аппараты с комбинированной схемой, в которых конечное превращение протекает адиабатически, с повышением температуры предпочтительнее. В слое катализатора также выравнивается работа всех трубок (возможные проскоки газа, неодинаковая степень превращения в разных трубках и т. д.). Однако трудности контроля АВТ присущи и аппаратам с комбинированной схемой. [c.462]

    Установлен ряд относительных скоростей иодирования моно-замещенных производных бензола [2]. В условиях термодинамического контроля (повышенная температура) наблюдается ме-та-замещение. В условиях кинетического контроля (комнатная температура) для соедииений с орго-адра-ориентантами наблюдается значительное преобладание продуктов /2йра-замещеиия. орго-Замещение преобладает в тех случаях, когда координация молекулы ТТФА с заместителем приводит к внутримолекулярному переносу электрофила. Например, метилбензоат дает почти исключительно орго-таллированное производное (95 7о). [c.479]

    При компримировании ацетиленсодержащих газов нужно тщательно следить за температурным режимом жатия. Для этого компрессоры оснащаются контроль-но-из.мерительными приборами, что обеспечивает надеж яый контроль температур по ступенях сжатия и сигнализацию о повышении температуры сверх 100°С. При нарушении температурного режима, свидетельствующей -,1 ненормальной работе компрессора, последний должен 1ыть оста ювлен. [c.100]

    Проверка подшипников заключается в контроле по краске прилегания вкладышей подшипников скольжения к расточкам корпусов и к шейкам вала. Один из подшипников насоса фиксирует положения ротора, т. е. является опорно-упорным, а второй подшипник для компенсации тепловых расширений является только опорным. В опорном подшипнике при ревизии проверяется зазор между галтелью вала и вкладышем подшипника (или между подшипником качения и расточкой корпуса). При повышении температуры перекачиваемой жидкости величина осевого зазора в опорном подшипнике также увеличивается. Измеренный осевой зазор должен соответствовать зазору, указанному в паспорте н a o a. [c.327]

    Опасность взрывов и пожаров во многих пожаро- и взрывоопасных производствах усугубляется наличием источников вредных выделений из аннаратуры, разветвленной сети технологических и вспомогательных трубопроводов, пз большого количества разъемных фланцевых соединений, задвижек, вентилей, сальниковых устройств, работающих в условиях повышенных температур, давления, коррозионных сред. Это требует систематического II тщательного наблюдения п контроля за их исправностью. [c.46]

    Физически это можно объяснить различием интенсивности радиального тепло- и массопереноса в зависимости от расположения структурной неоднородности. Чем больше радиальный градиент тедшератур, тем интенсивней радиальный тенлонеренос. В свою очередь, чем большая стенень превращения достигается в нятне , тем интенсивней происходит подсос в него ненрореа-гировавшего вещества, что приводит к повышению температуры. В случае образования в слое локального разрыхления на выходе наблюдается холодное пятно и небольшое повышение температуры в области, прилегающей к пятну , которое объясняется диффузией непрореагировавшего вещества в более горячую зону. Отметим, что на выходе пз второго слоя при в = 0,3 температура в горячем пятне на 50°С превышает среднюю но радиусу, что согласуется с экспериментом. На рпс. 5 приведены профили скорости фильтрации на выходе нз пятна с проницаемостью бв = = 0,3 и из слоя. Профиль скорости фильтрации выравнивается на расстоянии 18Йз, а на выходе из слоя определяющее влияние на профиль скорости оказывает температурная неоднородность и наблюдается некоторое повышение скорости в области горячего пятна . Характеристики температурных неоднородностей на выходе из слоев приведены в табл. 2. Наличие горячих и холодных пятен обусловливает соответственно положительные и отрицательные значения коэффициентов асимметрии. При степенях превращения, близких к единице (4-й слой), структурные неоднородности оказывают слабое влияние на процесс, хотя реализующаяся при этом аэродинамическая неоднородность весьма значительна. Структурные неоднородности кроме всего прочего ухудшают стабильность процесса. Как показали расчеты, параметрическая чувствительность в области с пониженной проницаемостью (бн = 0,3) в 2 раза больше, чем в остальной части слоя, что накладывает жесткие ограничения на флуктуации входных параметров, т. е. ухудшает возможность эффективного контроля и управления режимом в слое. [c.65]

    Для объективной оценки эффективности применения НПАВ в процессах повышения нефтеотдачи пластов был разработан метод определения химической стабильности НПАВ типа ОП-7, ОП-10 и АФ9-12 в условиях, приближенных к пластовым [32]. Метод позволяет судить о количественном и качественном присутствии НПАВ и продуктов их деструкции. Лабораторные испытания НПАВ на химическую стабильность проводились в присутствии пластовой воды и породы продуктивного пласта в герметических сосудах -автоклавах - в термобарических условиях конкретного месторождения при постоянном, контроле за температурой и давлением. Контроль за химической стабильностью НПАВ осуществлялся методом тонкослойной хроматографии. Сравнение хроматограмм исходного неонола и продуктов его деструкции, полученных в результате эксперимента, позволяет оценить процесс химической деструкции для условий конкретного месторождения. Появление на хроматограмме зон, отличных от исходного ПАВ, свидетельствует о возникновении продуктов деструкции НПАВ, а исчезновение зоны, характерной для исходной НПАВ - о полной химической деструкции последнего. Продукты химической деструкции и исходный НПАВ выделяли методом колоночной хроматографии с использованием растворителей, имеющих различную элюирующую способность, что позволило количественно разделить реакционную массу на фракции, содержащие отдельные продукты деструкции и исходный неонол. Выделенные индивидуальные продукты химической деструкции НПАВ идентифицировались методами ИК-, ЯМР-Н - и С - спектроскопии и элементного анализа. Степень химической деструкции рассчитывали по формуле  [c.19]

    Для предотвращения чрезмерного повышения температуры проводников при переходе электрической энергии в тепловую необходимо следующее тщательный контроль рабочих параметров в электрической сети (напряжения, силы тока) нормальные условия теплоотдачи проводов правильный выбор расстояния между проводами, их сечения и материала изоляции плотное присоединение проводов в местах контактов пропайка соединений надежность изоляции, сопротивления сети, всех соединений и контактов устройство автоматических блокировок на распределительном щите, отключающих участки электросети, на которых произошло короткое замыкание, и др. [c.207]

    Эти реакции не являются сильноэкзотермическими, и процесс восстановления сам по себе не приводит к большому повышению температуры в слое катализатора. Однако как только в процессе восстановления рабочим газом произойдет образование металлического никеля, сразу начнется метанирование, которое приведет к возрастанию температуры. По этой причине газ, используемый для восстановления, должен содержать возможно меньше СО и СО 2—в сумме не более 1%. Целесообразно осуществлять контроль за содержанием окислов углерода во время восстановления, например, вследствие неисправности установки удаления двуокиси углерода, поскольку эти меры предосторожности сохраняют катализатор и конвертор. [c.148]

    В присутствии избытка МНд, например в растворах минеральных удобрений, скорость коррозии в МН4ЫОз при комнатной температуре может достигать очень высоких значений — до 50 мм/год [21—24] (рис. 6.13). Комплексное соединение, образующееся в этом случае, имеет формулу [Ре(МНз)в ](ЫОз)2 [24]. Реакция, очевидно, идет с анодным контролем так как контакт низколегированной стали с платиной (при равной площади образцов) не влияет на скорость коррозии. Структура металла влияет на коррозионную стойкость. Так, нагартованная малоуглеродистая сталь корродирует с большей скоростью, чем закаленная при повышенной температуре. Это свидетельствует, что коррозия протекает не с диффузионным контролем, а зависит от скорости образования ионов металла на аноде и, возможно, до некоторой степени от скорости деполяризации на катоде. [c.119]

    Исходя из энергетизеских характеристик пороха и исследований, проведенных с применением комплекса контроля в скважинах нефтяных месторождений Пермской области, повышенная температура в зоне горения АДС наблюдалась в течение 1,5—4 ч. Поэтому сокращение времени на заключительные работы является резервом в повышении эффек-гивности ТГХВ. [c.111]

    Препарат получают при сплавлении тиоцианата аммония с дихроматом аммония и последующем выщелачивании сплава водой. 80 г тиоцианата аммония осторожно, равномерно нагрейте в фарфоровом стакане (чашке), тщательно перемешивая, пока масса частично не расплавится и температура не повысится до 140—150 °С (контроль термометром). После этого в нее внесите порциями (по 1 г), при непрерывном перемешивании, хорошо растертую и смешанную смесь (NH4)2 r207 и ЫН4КСЗ в количестве 17 г. После прибавления примерно 10 порций происходит бурная реакция, сопровождающаяся выделением аммиака и повышением температуры до 160 °С. Горелку погасите и добавьте остаток смеси, следя за тем, чтобы температура была постоянной (около 160 °С)  [c.299]

    Многие другие еоединения (такие как глины, некоторые цеолиты, слоистые сульфиды и др.) также имеют слоистую структуру, однако только СДГ обладают рядом уникальных свойств, важных для направленного синтеза наноматериалов. С одной стороны, слоистая структура СДГ устойчива для очень широкого спектра катионов и анионов. С другой стороны, количество анионов, присутствующих в межслоевом пространстве СДГ, определяется еоотрюшснисм М " М , которое легко поддается контролю при синтезе. Это позволяет получать СДГ заданного состава, и, следовательно, варьировать концентрацию реакционных центров в матрице. Кроме того, в силу высокой скорости диффузии газов в межслоевом пространстве, термическое разложение СДГ протекает с сохранением мотивов слоистой структуры. Это позволяет проводить химические реакции с участием анионов межслоевого пространства при повышенных температурах практически без разрушения матрицы, ограничивающей реакционную зону. Указанные свойства открывают широкие возможности химическою дизайна нанокомпозитных материалов на основе СДГ. [c.19]

    Приборы для проведения анализа с применением программирования температуры в принципе состоят из такпх же узлов, как и хроматографы, работающие в изотермических условиях. Однако вследствие особых требований, связанных с непрерывным повышением температуры, опи в деталях несколько отклоняются от общей формы. Это относится в первую очередь к системе, обеспечивающей нужный температурный режим. Эта система должна включать приспособление для быстрейшего охлаждения колонки после окончания опыта до начальной температуры. Дело в том, что часто, в особенности при проведении серийных анализов или контроля производственных процессов, с экономической точки зрения продолжительность [c.407]

    Диаметр трубы реактора 50 мм. В этом случае при темпматуре Tf = = 115° С или ниже температура охлаждающего агента должна быть порядка 101° С. Если, однако, Гх поднять до 105° С (см. рис. IV-49),-скорость теплоотвода станет равной скорости теплоприхода только при 117° С. Э+а точка устойчива. Однако уже при Ту. = 107° С процесс становится явно неустойчивым. Для предупреждения повышения температуры охлаждающего агента необходим более жесткий контроль температуры, чем в случае трубы диаметром 25 мм. Температура охлаждающего агента должна поддерживаться в пределах 2° С для того, чтобы горячая точка в реакторе поддерживалась в пределах 110—120° С. [c.357]


Смотреть страницы где упоминается термин Контроль при повышенной температуре: [c.479]    [c.69]    [c.187]    [c.157]    [c.174]    [c.102]    [c.64]    [c.369]    [c.120]    [c.70]    [c.344]   
Смотреть главы в:

Неразрушающий контроль Т3 -> Контроль при повышенной температуре




ПОИСК





Смотрите так же термины и статьи:

Температура контроль

Температура повышение



© 2025 chem21.info Реклама на сайте