Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергии на неоднородных поверхностях

    Особенности кинетики реакций на неоднородной поверхности не исчерпываются, однако, простым изменением формы изотермы адсорбции. Поверхность, неоднородная по теплоте адсорбции, должна быть неоднородна и кинетически. Будем считать, следуя Рогинскому [14], что в ходе процесса зависимость скорости реакции от концентраций реагентов остается неизменной на всех участках и температурная зависимость скорости реакции по-прежнему описывается уравнением Аррениуса. При этом величина предэкспонента постоянна на всех участках, а значение энергии активации распределено по некоторому закону. Все эти допущения являются дискуссионными, но в первом приближении они достаточны, так как главным эффектом действия катализатора обычно бывает именно изменение энергии активации реакции. [c.86]


    Следовательно, количество адсорбированных частиц, которое пропорционально степени заполнения поверхности 0, является логарифмической функцией времени. Экспоненциальное уменьшение скорости сорбции с увеличением количества адсорбированных частиц может быть легко объяснено увеличением энергии активации хемосорбции с увеличением степени заполнения поверхности . Это может происходить за счет взаимодействия между адсорбированными молекулами [51]. Такое объяснение может быть правильным даже в случае однородных поверхностей. Однако значительно более вероятным является предположение, что этот эффект возникает из-за неоднородности поверхности [52, 53]. [c.551]

    Следует еще раз подчеркнуть, что все рассуждений о механизме адсорбции и кинетике контактных реакций на неоднородной поверхности базируются на гипотетических предположениях, касающихся 1) числа активных участков с различной адсорбционной способностью 2) зависимостей между характеризующими эти активные места величинами, такими как теплота адсорбции, энергия активации адсорбции и энергия активации десорбции. [c.281]

    Экспериментальное определение теплоты адсорбции реагентов затруднено (тем более, что их величина вследствие неоднородности поверхности в значительной мере зависит от степени заполнения этой поверхности). Для многих случаев очень важным становится расчет действительной энергии активации. Опытным путем установлено, например, что для некоторых реакций гидрогенизации кажущаяся энергия активации близка к нулю, действительная же энергия активации составляет 20 ккал/моль. [c.282]

    При адсорбции на очень неоднородных поверхностях взаимодействие адсорбат—адсорбат будет маскироваться влиянием этой неоднородности и теплота адсорбции с ростом заполнения не будет увеличиваться. Неоднородность поверхности характеризуется наличием адсорбционных центров с различными энергиями адсорбции. Сначала заполняются центры с большими энергиями адсорбции по мере их заполнения теплота адсорбции падает. Это падение, как правило, настолько велико, что не может компенсироваться возрастающим, 1ю относительно слабым взаимодействием адсорбат—адсорбат. В качестве характерного примера можно привести теплоты адсорбции бензола на графитированной саже и кремнеземе. Дифференциальная теплота адсорбции бензола на саже с однородной поверхностью не зависит от степени заполнения из-за очень слабого взаимодействия между плоскими молекулами бензола (см. рис. XVI, 8, стр. 453). Поверхность силикагеля неоднородна как геометрически (пористость), так и химически (не- [c.502]


    Чтобы выявились особенности кинетики на неоднородной поверхности, контролирующая полоса должна прийти в движение. Это происходит при отравлении активных участков. Оговоримся, что под термином яд будем понимать реагент, продукт реакции или примесь, способные интенсивно сорбироваться на участках активной поверхности, закрывая доступ к ним реагентов. Возможно сочетание следующих условий отравление обратимо или необратимо энергия активации реакции Е и теплота адсорбции яда меняются симбатно или антибатно, или же корреляция между ними отсутствует. Случай симбатности величин Е малоинтересен. Яд сорбируется на наименее активных участках, и отравления фактически не происходит, пока концентрация яда не достигла критического (очевидно, весьма высокого) значения. При отсутствии корреляции ж Е яц, сорбируется с одинаковой вероятностью на участках поверхности с различными значениями Е, контролирующая полоса остается неподвижной и только активность катализатора постепенно падает со временем при необратимом отравлении и приходит к пониженному стационарному состоянию, зависящему от концентрации яда, при обратимом. При том и другом характере взаимосвязи между Е энергия активации сохраняет постоянное значение в течение всего процесса и кинетика остается лангмюровской. [c.86]

    Я. Б. Зельдович, идя этим путем, нашел, что если число центров данного сорта экспоненциально зависит от энергии адсорбции на них, то эта сумма преобразуется в уравнение типа уравнения Фрейндлиха. В настояш,ее время учение об адсорбции на неоднородных поверхностях представляет собой большую и хорошо разработанную главу теории адсорбции. [c.221]

    Практическое значение имеет развитие представлений о механизме адсорбции па неоднородных поверхностях. Эффектом неоднородности могут быть объяснены основные закономерности реального адсорбированного слоя характер адсорбированного равновесия (изотермы адсорбции), кинетика адсорбционных процессов, характер изменений теплот адсорбции и энергии активации. [c.151]

    В зависимости от характера распределения участков но теп-лотам адсорбции и энергиям активации на неоднородных поверхностях реализуется тот или иной тип адсорбционного равновесия. Основные используемые для практических расчетов изотермы, изобары и дифференциальные теплоты адсорбции на неоднородных поверхностях систематизированы в табл. 3.2 [71]. [c.151]

    Зависимость степени отравления катализатора от количества поглощенного им яда для многих случаев в широких пределах имеет линейный характер. Типичная кривая отравления катализатора с широким интервалом линейной зависимости представлена на рис. 1.11. Однако при неоднородности поверхности кривая отравления может иметь значительные отклонения от линейности. Величина отклонения зависит от типа функции распределения поверхности по теплотам адсорбции и от функции взаимосвязи теплоты адсорбции яда II энергии активации реакции. [c.56]

    В случае адсорбционного отравления неоднородной поверхности энергия активации может возрастать монотонно либо ступенчато Б результате покрытия сначала более, затем менее активных центров, При адсорбционном отравлении однородного катализатора (предельный случай) истинная Е не меняется, а наблюдаемая может возрастать. [c.63]

    Процесс пропитывания характеризуется в значительной степени поверхностными свойствами углерода (поверхностной энергией) и пеков (краевым углом смачивания, поверхностным натяжением). Поверхностные свойства углерода зависят от энергетической неоднородности поверхности, наличия на ней разорванных связей, концентрации различных кислород-, серосодержащих и других групп, удельной поверхности, температуры и других факторов все они влияют на взаимодействие газов и жидкостей с твердой поверхностью, приводящее к образованию граничных слоев (поверхностных в случае газов и полимолекулярных в случае жидкостей). [c.66]

    На неоднородной поверхности гетерокоагуляция асфальтенов осуществляется под действием различной по значениям поверхностной энергии твердой фазы, что приводит к формированию сложного граничного слоя пилообразной формы. Промежутки между выступами (состоящими из асфальтенов) заполняются жидкостью, лишенной или с малым содержанием асфальтенов и склонной к структурированию. В этом случае эффект повышенного структурирования аномальной жидкости в тонких прилегающих слоях сохраняется. [c.68]

    Для статистических расчетов распределения по ДЯ и MJ эквивалентны тепловым эффектам адсорбции Qa или десорбции Qo при расчетах равновесий, а при кинетических расчетах—энергии активации Е. Эти величины являются основными для теории неоднородных поверхностей, так как тепловые эффекты определяют относительную степень заполнения при адсорбции и константу равновесия при химической реакции. Относительные величины энергии активации определяют константы скорости адсорбции, десорбции и каталитических реакций. Сложные математические расчеты различных случаев равновесий и кинетики процессов на неоднородных поверхностях здесь не приводятся. Делающие могут ознакомиться с ними подробнее в монографии С. 3. Рогинского [57]. [c.156]


    Сорбция на твердых поверхностях протекает гораздо сложнее, так как здесь имеют место различные виды сорбции. Вопрос становится весьма запутанным вследствие неоднородности поверхности, структуры ее, неравномерного распределения свободной энергии, влияния числа, характера и распределения активных участков на деформации адсорбированных молекул и т. д. Эти вопросы будут освещены далее. [c.101]

    Неоднородность поверхности можно доказать различными способами. То обстоятельство, что для отравления катализаторов достаточны малые количества ядов, указывает на особую активность не всей поверхности, а каких-то особых участков на ней. Нагретые поверхности испускают электроны не равномерно, а от определенных локализованных участков. Было доказано, что на поверхностях, вследствие их неоднородности, энергия способна к флуктуациям. [c.108]

    Исходя из экспериментальных доказательств неоднородности строения реальных твердых веществ, неупорядоченности поверхности, наличия активных участков и возможности перераспределения поверхности путем поверхностного ползания или миграции, С. 3. Рогинский считает, что эти сложные явления оказывают непосредственное влияние на силовое поле и физические свойства поверхностей. На неоднородных поверхностях величины теплот адсорбции Q и энергий активации Е зависят от того, на каких участках поверхности протекает процесс. [c.155]

    Согласно Тейлору реакции протекают на особых местах поверхности катализатора, так называемых активных центрах. Даже в чистом металле дтомы, расположенные на дефектах решетки, на реС рах и вершинах кристаллитов, ведут себя иначе, чем атомы, расположенные на плоской поверхности. Неоднородность поверхности характеризуют различными методами, изучением зависимостей дифферешщальной теплоты адсорбции или энергии активации при термодесорб1лии от степени заполнения. На изобарах адсорбции может наблюдаться несколько максимумов, что свидетельствует о наличии нескольких типов хемосорбции. В некоторых случаях неоднородность катализатора можно измерить индикаторами Гаммета, другими основаниями, с помощью инфракрасного спектра для выявления числа и силы кислотных центров. В случае бифункциональных катализаторов подбором соответствующих ядов можно оценить соотношение шФаллических и кислотных центров. Центрами могут служить группы или кластеры [c.90]

    Для статистической характеристики неоднородных поверхностей необходимо знать р(г) или функцию распределения участков по значениям г и законы изменения г и p(z) в условиях изучаемого процесса. В основу статистического анализа положено распределение по величинам свободной энергии из основных термодинамических уравнений [c.156]

    Скорость процесса на неоднородной поверхности можно вычислить следующим путем. Скорость процесса, протекающего без самоотравления (блокировки поверхности), для участков с энергией активации составляет и определяется из выражения [c.158]

    Переход быстрой хемосорбции в медленную во многих случаях объясняется неоднородностью поверхности. Скорость медленной хемосорбции зависит от энергии активации и, согласно имеющимся наблюдениям, экспоненциально падает с увеличением количества адсорбированного вещества. Энергия активации линейно растет с увеличением степени заполнения 0. Мы вернемся к этому соотношению в разделах IX, 9 и 11, где будет показано, что данное явление еще ие доказывает наличия неоднородности. [c.128]

    Другое истолкование логарифмической изотермы основано на предположении об энергетической неоднородности поверхности электрода, т. е. о наличии на поверхности центров адсорбции с различной энергией связи. Первые порции адсорбирующихся частиц садятся на наиболее активные центры, тогда как последующие — на центры с более низкой энергией связи. В результате вновь приходим к выводу об уменьшении энергии адсорбции с ростом заполнения поверхности адсорбатом. [c.83]

    Наличие энергетической неоднородности доказывают опыты по термической обработке платинового электрода. Так, если бы поверхность была однородной, то относительное количество мест с разной энергией связи (из-за проявления сил отталкивания) при рекристаллизации поверхности оставалось бы постоянным. В действительности при нагревании происходит преимущественное уменьшение числа мест с высокой энергией связи. Другое доказательство неоднородности поверхности представляют данные по изотопному обмену адсорбированных атомов водорода скорость обмена на различных адсорбционных центрах существенно различается. Наконец, в пользу неоднородности поверхности платинового электрода говорит тот факт, что логарифмическая изотерма адсорбции получается не только для атомов водорода, но и при адсорбции других веществ как заряженных ионов, так и нейтральных молекул. Таким образом, при объяснении закономерностей адсорбции на платине необходимо в первую очередь учитывать энергетическую неоднородность ее поверхности, хотя при адсорбции ионов в значительной степени проявляются и силы отталкивания. [c.83]

    Для вывода адсорбционных соотношений, описывающих обратимую адсорбцию на неоднородных поверхностях, введем понятие функции распределения адсорбционных мест по какому-либо адсорбционному параметру. Такая функция характеризует долю или вероятность нахождения на поверхности мест с определенными значениями данного параметра. Пусть это будет функция распределения по энергиям адсорбции. Обозначим через /i(AG °) число мест на поверхности со значениями стандартных свободных энергий адсорбций AG°, меньшими AG/°(AG°значениями энергий адсорбции s(AG °) равна  [c.89]

    При рассмотрении неоднородных поверхностей нередко делают предположение, что число степеней свободы адсорбированных частиц на всех местах одинаково и соответственно энтропийный член [см. уравнение (3.2)] для различных адсорбционных мест полагают постоянным, Тогда в уравнениях, характеризующих функцию распределения по энергиям адсорбции, вместо Д(3° используется величина теплоты адсорбции Я = —АН . [c.92]

    Интенсивность действия каталитического яда тем выше, чем больше энергия его химического взаимодействия с активным компонентом катализатора, чем труднее его химическая регенерация или десорбция яда. Обычно дезактивирующая способность каталитического яда растет с увеличением его атомной или молекулярной массы. Так, отравляемость гидрирующих катализаторов никель — оксид хрома соединениями серы, селена и теллура растет от S к Те. С другой стороны, отравление металлических (Pt, Ni) катализаторов органическими соединениями серы (меркаптаны, сульфиды) растет с увеличением длины цеии органического радикала фиксированная на активном участке поверхности атомом серы молекула яда вращающимся вокруг него по поверхности алифатическим радикалом экранирует и ближайшие участки поверхности, препятствуя адсорбции на них компонентов реакции. Частичное отравление энергетически неоднородной поверхности может в случае сложных реакций влиять на течение лишь отдельных стадий, чем можно регулировать селективность каталитического действия и повышать выход целевого промежуточного продукта торможением последних (или параллельных) стадий процесса. Практически важным случаем является дезактивация катализаторов побочными продуктами реакции, отлагающимися на поверхности, например закоксовывание катализаторов нефтехимических про- [c.305]

    Смещение пучка А тем больше, чем ближе угол падения р к критическому значению. Поэтому данное явление можно рассматривать как перенос энергии вдоль поверхности неоднородной волной. Чем ближе угол р к критическому значению, тем больше амплитуда неоднородной волны на заданной глубине, тем больше рас-, стояние она пробегает вдоль поверхности. [c.38]

    Развиты также теории ассоциированных систем, основанные на решеточной модели, которая учитывает зависимость энергии взаимодействия между молекулами от способа их контактирования (взаимной ориентации). Такой учет возможен в рамках представлений о неоднородной поверхности молекул, о наличии у молекулы различных контактных участков, отличающихся по энергетическим характеристикам взаимодействия с соседями (допустим, для молекулы спирта выделяются контактные участки углеводородного радикала, кислорода и водорода гидроксильной группы). [c.257]

    Изменение дифференциальных теплот и энергий активации адсорбции с ростом заполнения поверхности не могут быть объяснены из представлений об однородной поверхности. Поэтому изменение дифференциальных теплот адсорбции следует трактовать исходя или из неоднородности поверхности, или из наличия взаимодействия между адсорбированными молекулами на однородной [c.46]

    Кейер и Рогинский для доказательства неоднородности поверхности провели опыты, известные под названием дифференциальноизотопного метода [И 1. При адсорбции с первыми порциями сорбируемого газа впускаются меченые (радиоактивные) молекулы сорбата. После достижения сорбционного равновесия сорбат откачивается, причем меченые молекулы десорбируются в последнюю очередь, что доказывает неоднородность поверхности. С другой стороны, Хориути и Тойя [9] показали экспериментально, что вид функций распределения по теплотам адсорбции водорода на никеле и вольфраме меняется с температурой в интервале О—300° С. Это, по мнению авторов, является доказательством против теории неоднородной поверхности, поскольку энергия создания или перераспределения дефектов на поверхности твердого тела значительно больше энергии теплового движения атомов в рассматриваемом интервале температур. Опыты Кейер и Рогинского авторы объясняют статистиковероятностными расчетами, которые дополнены представлением [c.18]

    Во-вторых, нужно приготовить катализатор с наибольшим числом активных участков на единицу поверхности, причем они должны иметь оптимальную энергию связи с реагирующими молекулами. Для этого катализаторы готовят с максимально неоднородной поверхностью, на которой разные участки будут сильно различаться в энергетическом отношении. Участки поверхности с очень большой энергией связи дадут прочные соединения с реагентами, покроются ими и будут неактивны участки поверхности с очень малой энергией связи будут очень слабо и медленно реагировать с молекулами исходных веществ и также окан<утся неактивны. И только участки поверхности с оптимальной энергией связи будут участвовать в каталитической реакции и ускорять ее. Чем более неоднородна поверхность, тем более неоднородна она и в энергетическом отношении и скорее можно найти на пей достаточное число активных участков (активных центров) с требуемыми оптимальными энергиями связи. [c.462]

    Учитывая, что процесс обессеривания проходит в кинетической области реагирования и описывается уравнением, выведенным для процессов, протекающих на неоднородных поверхностях с переменной энергией активации, получено выраже1ше [c.211]

    Уравнение (18) справедливо, как следует из теории адсорбции, для неоднородных поверхностей при значениях >0. Обработка опытных данных по уравнению (18) сводилась к определениьэ констант а, Н, а также кажущейся энергии активации процесса тер-мообессернвания. При этом /о принято равным 10 2 с. Уравнение (18) может быть использовано для описания не только процесса обессеривания, но и других физико-химических процессов, протекающих в массе кокса (для определения УЭС, глубины прокаливания кокса и т. д.). Для расчета остаточного содержания серы [c.211]

    Иначе обстоит дело в НДС. В этом случае Ло/Л имеет конечное значение и на свойства дисперсных систем (в том числе на химические свойства) существенное влияние начинает оказывать энергия поверхностных центров, обусловленных действием ван-дер-ваальсовых сил и наличием на поверхности различного рода химических дефектов — свободных радикалов, функ-циональных групп или, иными словами, неоднородностей поверхности. Изменение отношения Ло/Л в зависимости от hjr. как известно, носит экстремальный характер. На рис. 52 показана динамика поверхностного натяжения и изобары адсорбции для молекулярной жидкости (кривая 1) и НДС (кривая 2] в зависимости от температуры. Видно, что с изменением температуры поверхностное натяжение для молекулярных жидкосте ) (Ло/Лл- оо) изменяется монотонно, в то время как динамика [c.152]

    Исходя из этого, при выборе кинетических уравнений мы приняли предположение, что лимитирующей стадией процесса обессеривания является деструкция термостойких содержащих серу комплексов (З 5у). Таким образом, процесс термообессериваппя лимитируется не теплотехническими и не диффузионными факторами, а кинетическими, поскольку проходит в кинетической области реагирования и описывается уравнением, выведенным для процессов, протекающих иа неоднородных поверхностях с переменной энергией активации. [c.223]

    С другой стороны, энергетическая неоднородность поверхности, присутствие обменных катионов приводят к различию в свойствах связанной воды. Свойства молекул воды, связанных обменными ионами поверхности твердой частицы, отличаются от свойств воды в объеме тем больше, чем выше плотность заряда нона.В глинистых минералах количество воды, связанной наиболее прочно, больше при наличии поливалентных катионов в обменном комплексе. Кривые обезвоживания мо-ноионных форм бентонитов при нагревании (рис, 11.16) свидетельствуют о различном энерге-т-нческом состоянии связанной воды в зависимости от обменного катиона, его способности влиять яа трансляционное движение молекул воды. Чем выше упорядочивающее воздействие катионов (А1 +, Mg +), тем слабее трансляционное движение молекул воды и тем при более высоких температурах в пей разрываются водородные связн и она удаляется с [c.61]

    Эффект разрыхления, возможно, также играл определенную. роль в опытах Тейлора и его сотрудников, уже описанных в разделе IX, 3, в которых увеличение температуры во время медленной адсорбции (требующей энергии активации) во многих случаях вызывало быструю десорбцию и последующую медленную повторную адсорбцию [290]. Как было отмечено в данном разделе, это явление часто считалось доказательством неоднородности поверхности по отношению к хемосорбции. При этом принималось, что наряду с участками, обладающими сравнительно низкой теплотой адсорбции и сравнительно низкой энергией активации, суидествуют участки, где как теплоты хемосорбции, так и энергии активации имеют более высокие значения. [c.154]

    Вопрос адсорбции на биографически неоднородной поверхности молекул, занимающих две или более элементарные площадки, был рассмотрен в работе Ю. А. Чизмаджева и В. С. Маркина. Для вывода изотермы адсорбции на такой поверхности требуются более детальные сведения о структуре неоднородности, о характере распределения адсорбционных мест. Были рассмотрены два крайних случая. Первый случай — когда места с одинаковыми значениями энергий адсорбции объединены в макроскопические (по сравнению с размерами одной адсорбционной площадки) участки— доменная неоднородность. Второй случай —когда адсорбционные площадки с различными значениями энергии связи совершенно произвольно разбросаны на поверхности — микроскопическая неоднородность. Предполагалось, что функция распределения площадок по энергиям адсорбции равномерна и что все связи адсорбированной частицы с поверхностью идентичны (одинаковы по своей природе). Теоретическое рассмотрение привело к выводу, что в обоих случаях изотерма в области средних заполнений близка к логарифмической. Однако при доменной неоднородности наклон изотермы (значение фактора /) определяется разбросом энергий адсорбции в расчете на всю частицу, т. е. зависит от числа связей, а при микроскопической неоднородности— разбросом энергии адсорбции, отнесенной к одной связи, т. е. не зависит от числа овязей. [c.98]

    О, адсорбированные анионы, адатомы металлов и др.) а/ и ttj/i — соответствующие значения адсорбционных коэффициентов. Уравнение отвечает аддитивному влиянию различных адсорбированных частиц на энергию активации процесса хемосорбции органического вещества. В случае собственной неоднородности поверхности уравнение (3.57) выполняется при условии, что адсорбция различных компонентов происходит на одних и тех же адсорбционных центрах и энергии адсорбции на i-x местах компонентов А, В, С... связаны между собой простой связью (ЛО°а) =а (ДО°в) = a"( AG° ). .., т. е. вид функции распределения для различных компоненто.в сохраняется неизменным. Одновременное выполнение названных условий при адсорбции веществ, сильно отличающихся по своей химической природе, представляется маловероятным. Возможна некоррелируемость или сложная связь свободных энергий и энергий активации процессов хемосорбции различных частиц. Соответственно уравнения, выражающие зависимость Уа от 0i, могут отличаться от уравнения (3.57) и быть значительно более сложными. Аддитивность в большей мере соответствует модели наведенной неоднородности, когда частицы различных сортов одновременно участвуют в соз-.дапии общего дипольного потенциала на поверхности или определенной плотности электронного газа. [c.111]

    А. Г. Пшеничников и сотр.), причем две эти стадии протекают с соизмеримыми скоростями. При электроокислении этилена в области низких потенциалов (рис. 8.2) (Наблюдается отрицательный порядок по парциальному давлению этилена. Предполагается, что скорость распада частиц (С2Н4)адс на частицы с -5 одним углеродным атомом в условиях неоднородной поверхности возрастает с уменьшением парциального давления углеводорода вследствие освобождения мест с более высокой энергией связи, поскольку на таких местах распад протекает быстрее. Уменьшение тока после максимума связано с торможением процесса адсорбированным кислородом. [c.271]

    Возвращаясь к случаю переноса звуковой энергии вдоль поверхности, отметим, что при отражении от границы вода —сталь будут два экстремума соответствующий зеркальному распространению звука в воде и соответствующий случаю, когда часть пути звук пройдет вдоль поверхности стали (существование в стали других волн, кроме продольных, не учитываем). Энергия будет распротраняться обоими экстремальными путями. Значительная часть энергии пойдет по пути образования неоднородной поверхностной волны, так как время распространения в этом случае— наикратчайшее. [c.38]


Смотреть страницы где упоминается термин Энергии на неоднородных поверхностях: [c.86]    [c.341]    [c.209]    [c.223]    [c.303]    [c.317]    [c.303]    [c.117]    [c.40]    [c.68]   
Введение в кинетику гетерогенных каталитических реакций (1964) -- [ c.313 ]




ПОИСК





Смотрите так же термины и статьи:

Поверхность энергия



© 2025 chem21.info Реклама на сайте