Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кинетика гомогенных химических электрохимической реакции

    В этой области перенапряжений зависимость между /о и г) линейна и не зависит от коэффициента переноса. Достаточно надежная оценка плотности тока обмена по этому уравнению возможна, если последняя, по крайней мере, на порядок ниже предельной диффузионной плотности тока. Далее для анализа поляризационных кривых необходимо установить природу предельней плотности тока. На вращающемся дисковом электроде значение предельной диффузионной плотности тока прямо пропорционально корню квадратному из частоты вращения диска. Для кинетических предельных токов (определяемых замедленностью стадии гомогенной или гетерогенной химической реакции) значение предельной плотности тока не зависит от перемешивания. Поправка в уравнениях электрохимической кинетики на предельную плотность тока не зависит от его природы, так как возникновение перенапряжения диффузии и химической реакции связано с изменением концентрации. [c.405]


    Практикум содержит работы по основным разделам физической химии. В пособии рассмотрены методы физико-химических измерений, обработки экспериментальных данных и способы их расчетов. Большое внимание уделено строению веществ, первому началу термодинамики, фазовому равновесию в одно-, двух- и многокомпонентных системах, химическому равновесию в гомогенных системах и др. Интерес представляют работы по молекулярной спектроскопии и кинетике гомогенных и гетерогенных реакций. Изменены работы, связанные с применением термохимических, рентгеноструктурных и некоторых электрохимических методов исследования. Введены работы по расчету сумм состояния и термодинамических функций. [c.2]

    В общетеоретическую часть включены вопросы строения вещества, энергетики и кинетики химических реакций, растворов, окислительно-восстановительных и электрохимических процессов, а также обзор свойств элементов и их соединений. Рассмотрено строение вещества на атомном, молекулярном и надмолекулярном уровне, а также строение кристаллов. Изложены общие закономерности протекания химических реакций, в том числе основы химической термодинамики и химической кинетики. Большое внимание уделено тепловым эффектам и направленности химических реакций, химическому, фазовому и адсорбционному равновесию. Изложены кинетика гомогенных и гетерогенных реакций, цепных и фотохимических реакций и основы катализа. Освещены дисперсные системы, коллоидные и истинные растворы, большое внимание уделено растворам электролитов. Рассмотрены термодинамика и кинетика окислительно-восстановительных и электрохимических процессов, коррозия и защита металлов. Выполнен обзор свойств химических элементов и их простых соединений, рассмотрены строение и свойства комплексных и органических соединений. [c.3]

    Кинетика гомогенной химической реакции электрохимически генерированного катион-радикала ДФА с пиридином в ацетонитриле исследована с помощью метода ВДЭ [74]. Реакция имеет первый порядок как по катион-радикалу, так и по пиридину, что исключает возможность диспропорционирования. Константа скорости второго порядка реакции (3-39) равна 4,5( 0,9) 10 л-моль" -с .  [c.113]

    Прежде чем приступить к изложению результатов и их обсуждению, целесообразно напомнить отличие эффектов растворителя в электрохимической кинетике от соответствующих эффектов в кинетике гомогенных химических реакций. В химической кинетике при изменении природы растворителя мы сталкиваемся в первую очередь с изменением энергии сольватации исходных веществ и продуктов реакции. Эти изменения могут быть довольно большими, и они маскируют при этом более тонкие эффекты, определяемые изменением энергии реорганизации. В электрохимических же реак- циях положение существенно иное. Как это было показано в разделе 1.3, изменение энергии сольватации при переходе от одного [c.144]


    Роль гомогенных химических реакций в электрохимической кинетике была выявлена впервые в ходе полярографических измерений на капельном ртутном электроде (Р. Брдичка и К. Визнер). При полярографическом восстановлении некоторых слабых органических кислот при небольших pH наблюдается лишь волна восстановления недиссоциированных молекул этих кислот. При увеличении pH высота этой волны уменьшается, а при более отрицательных потенциалах появляется волна восстановления анионов кислот. Высота первой волны ниже, чем рассчитанная по уравнению Ильковича для концентрации недиссоциированных молекул кислоты в растворе. Ток этой волны практически не зависит от высоты ртутного столба, что указывает на его кинетическую природу. Последнее подтверждается также высокой энергией активации процесса, соответствующего первой волне. Эти факты говорят о том, что ток первой волны лимитируется скоростью гомогенной химической реакции протонизации А 4-Н+ НА. Ско-. рость электродных процессов может лимитироваться и другими медленными химическими реакциями (дегидратации, диссоциации или образования комплексных частиц). [c.206]

    Использование различных вариантов метода фотоэмиссии (в том числе лазерного) позволяет решать широкий круг вопросов в области химической и электрохимической кинетики. Малые расстояния между зоной образования промежуточных продуктов и поверхностью электрода в значительной мере устраняют диффузионные ограничения и дают возможность измерять константы скорости очень быстрых электродных к 75 см/с) и гомогенных химических реакций, характерное время которых сравнимо или больше характерного времени диффузии к электроду продуктов захвата сольватированных электронов акцептором (10 —10 с) Метод позволяет также определять коэффициенты переноса электродных реакций и измерять коэффициенты диффузии промежуточных продуктов. [c.219]

    Роль гомогенных химических реакций в электрохимической кинетике была выявлена впервые в ходе полярографических измерений на капельном ртутном электроде (Р. Брдичка и К. Визнер). При полярографическом восстановлении некоторых слабых органических кислот при небольших pH наблюдается лишь волна восстановления недиссоциированных молекул этих кислот. При увеличении pH высота этой волны уменьшается, а при более отрицательных потенциалах появляется волна восстановления анионов кислот. Высота первой волны ниже, чем рассчитанная по уравнению Ильковича для концентрации недиссоциированных молекул кислоты в растворе. Ток этой волны практически не зависит от высоты ртутного столба, что указывает на его кинетическую природу. Последнее подтверждается также высокой энергией активации процесса, соответствующего первой волне. Эти факты говорят [c.244]

    Электродные реакции комплексов металлов наряду с электрохимическими часто включают химические стадии, в ходе которых происходит реорганизация внешней и внутренней координационных сфер реагирующих комплексов. Подобные процессы во многом сходны, а иногда и совпадают с процессами реорганизации координационной сферы комплексов в гомогенных реакциях. Заключение о природе и условиях протекания стадий электродных реакций иногда можно сделать на основании сопоставления кинетических параметров суммарной электродной реакции и ее стадий с соответствующими параметрами сходных гомогенных реакций комплексов металлов. Подобный подход плодотворен при изучении кинетики и механизма электродных реакций окислительно-восстановительных систем, образованных комплексами металлов, которые находятся в растворе. Этот вид реакций и рассматривается в данной главе, причем основное внимание уделяется одноэлектронным реакциям одноядерных комплексов металлов, механизмы которых наиболее просты и наиболее изучены, [c.120]

    Для контроля и управления процессом образования полимерного покрытия необходимо исследовать механизм и кинетику электрохимической реакции, приводящей к образованию активных центров (со) полимеризации, а также установить роль предшествующих и последующих гомогенных химических реакций в объеме раствора. Кроме того, на процесс образования полимерного покрытия большое влияние могут оказывать адсорбционные явления на поверхности электрода. [c.107]

    Так, в чисто электрохимических процессах изменение концентрации исходного вещества, как правило, не сказывается на механизме реакции. Оно влияет лишь в тех случаях, когда приводит к изменению степени заполнения поверхности электрода специфически адсорбированным исходным органическим веществом или продуктом реакции, т. е. исключительно через адсорбцию. При наличии химических стадий проявляются закономерности химической кинетики в гомогенной фазе. Низкая концентрация исходного вещества в растворе неблагоприятна для протекания бимолекулярных реакций, ее повышение, напротив, способствует их осуществлению. По этой причине в сравнительно концентрированных растворах реагента часто имеет место взаимодействие продуктов реакции с исходным веществом, что сказывается на скорости электродного процесса и характере его конечных продуктов. [c.190]


    При рассмотрении механизма электродных процессов различают реакции, протекающие в одной среде (гомогенные реакции) и реакции, которые протекают на поверхности раздела фаз (гетерогенные реакции). Для электрохимии характерно, что в сферу ее изучения входят преимущественно гетерогенные системы, состоящие из двух или более различных гомогенных областей. Известно, что в гетерогенных реакциях важную роль играет скорость диффузии, миграции, конвекции исходных реагентов и конечных продуктов реакции в направлении к поверхности раздела фаз либо в обратном направлении от этой поверхности. Нона кинетику электродных процессов, помимо диффузионных ограничений (концентрационная поляризация), могут заметно влиять химические реакции, протекающие у электродной поверхности, и особенно электрохимический акт взаимодействия между частицами реагирующего вещества и электронами (замедленный разряд, ионизация). Помимо этого, ряд специфических затруднений может внести явление адсорбции на электроде частиц вещества, участвующих в реакции. [c.16]

    При изучении механизма сложных электродных процессов целесообразно привлекать различные электрохимические методы, так как теория каждого из них основывается на тех или иных упрощающих допущениях. Для промежуточных химических стадий важно не только определять их количественные характеристики, но и изучать их механизм и кинетику с точки зрения гомогенной кинетики органических реакций. [c.154]

    Природу и количественные характеристики химических и электрохимических стадий электродных реакций комплексов металлов удобно устанавливать в тех случаях, когда возможны независимые исследования их гомогенных реакций в растворе и кинетики электродных реакций. При этом необходимо привлекать имеющиеся сведения о составе и строении изучаемых комплексов металлов в растворе, кинетике и механизме их гомогенных окислительновосстановительных реакций и процессах замещения внутрисферных лигандов. [c.5]

    По-видимому, это первый в электрохимической кинетике случай, при котором-наблюдался переход от гомогенной реакции к гетерогенной в связи с ростом скорости химической стадии процесса. [c.233]

    Прежде чем приступить к изложению и обсуждению дальне -ших результатов, целесообразно обратить внимание на отличие эффектов растворителя в электрохимической кинетике от соответствующих эффектов в кинетике гомогенных химических реакций. В химической кинетике при изменении природы растворителя мы сталкиваемся в первую очередь с изменением энергии сольватации исходных веществ и продуктов реакции. Эти изменения могут быть довольно большими, и они маскируют при этом более тонкие эффекты, определяемые изменением энергии реорганизации. В электрохимических же реакциях положение существенно иное. При равновесном потенциале свободная энергия исходного состояния — например, сольватированный ион водорода - - электрон в металле, и конечного состояния (газообразный Нг) равны, и это равенство сохраняется при замене одного растворителя на другой. Иными словами, изменение энергии сольватации при переходе от одного растворителя к другому автоматически компенсируется вызванным этим изменением сдвигом равновесного скачка потенциала металл — раствор, так что уровень энергии исходного состояния в целом не меняется. Таким образом, сравнение кинетики в разных растворителях при равновесном потенциале — или, в более общем случае, при одинаковом перенапряжении — есть сравнение в изоэнергетическнх условиях. Поэтому отвечающая этим услови-ЯхМ реальная энергия активации непосредственно не зависит от энергии сольватации реагирующих веществ [41]. Следовательно, электрохимическая кинетика в принципе предоставляет нам уникальную возможность сравнивать реакции в разных растворителях таким образом, что единственным наблюдаемым эффектом оказывается изменение энергии реорганизации (под реорганизацией здесь подразумевается изменение любых координат, приводящее к реакции — это может быть переориентация диполей, перестройка химических связей и т. п.). [c.37]

    Вступление химии электродных процессов, или, как ее иначе называют, электродики , в современную стадию развития происходит во многих направлениях. В настоящее время кинетика электродных процессов трактуется с формальной полнотой в соответствии с кинетикой, разработанной в других областях для описания последовательных химических реакций, и ее место как части физической химии гетерогенных реакций достаточно выяснено. Старый эмпирический подход к решению прикладных коррозионных задач уступает в настоящее время место более глубокому пониманию процессов растворения, электрохимического окисления и пассивации металлов на основе электродной кинетики. Влияние потенциала на протекание электрохимических реакций рассматривается аналогично влиянию давления на кинетику гомогенных химических реакций в конденсированных фазах. Начинает учитываться связь между электрокатализом и свойствами материала электрода, рассматриваемого как гетерогенный катализатор, а также адсорбционное поведение промежуточных частиц и реагентов на поверхности, что обеспечивает научную основу для быстрого развития технологии прямого электрохимического превращения энергии. Двойной слой более не трактуется просто как аналог плоского конденсатора, а следовательно, становится более ясной роль адсорбции и ее связь с электродной кинетикой. Полупроводники перестали быть объектом изучения только физики твердого тела, поскольку стали рассматриваться свойства их поверхности, находящейся в контакте с раство- [c.8]

    КИНЕТИКА ХИМИЧЕСКАЯ (греч. к пб11ко5 — способный двигать) — учение о скорости химических реакций, важнейший раздел физической химии. Под К- X. понимают зависимость скорости химической реакции от концентрации реагирующих компонентов, температуры, давления, катализатора и других параметров, например, потенциала электрода — в электрохимических реакциях, интенсивиости света — в фотохимических реакциях, дозы излучения — в радиационно-химических реакциях й т. д. Скоростью химической реакции называется число актов реакции, происходящих за единицу времени в единице объема фазы — в случае гомогенной реакции, или на единичной поверхности раздела — в случае гетерогенной реакции. Одной из важнейших характеристик К. X. является константа скорости реакции, которую определяют через концентрацию реагирующих компонентов. Йапример, для реакции [c.126]

    Конечные продукты реакции, как правило, определяют путем проведения макроэлектролиза при контролируемом потенциале с последующим их выделением из раствора н анализом с помощью методов, обычно применяемых в органической химии (определение физических констант вещества, элементный анализ, ЯМР- и ИК-спектроскопия, масс-спектрометрия, хроматография и т. д.). Если эти продукты образуются в результате медленных химических превращений в объеме раствора, следующих за переносом электрона, то исследование кинетики таких химических стадий электрохимическими методами оказывается малоэффективным. Здесь более пригодны методы изучения химической кинетики в гомогенной фазе. Нечувствительность электрохимических методов эксперимента к достаточно медленным химическим превращениям в растворе является причиной того, что во многих случаях выводы о природе конечного продукта реакции, сделанные на основе данных препаративного электролиза и анализа поляризационных кривых, измеренных в стационарных или нестационарных условиях, оказываются различными, поскольку относятся к неодинаковым временным интервалам, охватывающим неодинаковое число стадий суммарного процесса. [c.195]

    Значение химических стадий в кинетике электрохимических реакций. Почти любой электродный процесс включает в себя, как необходимую составную часть, чистр химическое превращение. Это превращение может быть гомогенным или гетерогенным, оно может предшествовать собственно электрохимическому акту или следовать за ним, но ни в одном из случаев константа его скорости не должна зависеть (так как оно является чисто химическим) от потенциала электрода. [c.309]

    Необходимо, наконец, отметить, что применение принципа л. с. э. к электродным процессам в полярографии имеет менее строгие предпосылки, чем его примёнение для гомогенных химических реакций, к которым он первоначально был приложен. Наряду с некоторыми каталитическими реакциями электродные реакции являются первым примером гетерогенного процесса, к которому применены уравнения л. с. э. Но здесь наряду с факторами строения молекул существенную роль играют факторы электрохимической кинетики — строение двойного слоя, адсорбируемость молекул, деформация связей и т. д., которые явно не коррелируются с электронным строением молекулы. В частности, высказывались соображения [97], что для выполнения уравнения л. с. э. величина г] -потенциала должна быть мала в противном случае следует внести поправку на г -потенциал [98]. Было высказано мнение [99], что уравнения л. с. э. должны применяться не к значениям д, а к значениям констант скорости электродного процесса кь, экстраполированным к условиям, в которых о = о, т. е. к электрокапил-лярному нулю. Систематических наблюдений над влиянием этих факторов на Ег, , однако, нет. Они должны быть поставлены в будущем, так же как и должны быть поставлены опыты с повышением температуры, подбором растворителя и быстрокапающего капилляра для предотвращения адсорбции компонентов электродной реакции и получения истинных значений р -констант. [c.111]

    Одновалентные катионы тина Li" , являющиеся жесткими кислотами, как и протон, могут участвовать в нейтрализации анион-радикалов. Катионы фона, способные к образованию йонных пар, также могут влиять на механизм электродных реакций. С помощью добавок доноров протонов обычно легко устано-бить, является ли промежуточно образующаяся частица анион-радикалом или дианионом. Роль среды, которая может иногда существенно влиять на протекание электродных процессов, изучена еще недостаточно. Растворитель или непосредственно участвует в электродном процессе, являясь донором или акцептором йромежуточно образующихся частиц, или оказывает влияние на кинетику переноса электрона в результате того, что расстояние Между электродом и центром реагирующей частицы в переходном состоянии также зависит от природы растворителя. Электрохи-Мики-органики постоянно прилагают усилия, чтобы найти растворитель с низкой кислотностью и электрофильностью для Восстановления и низкой основностью и нуклеофильностью для окисления. Примером может служить использование довольно редко встречающегося в электрохимической практике растворителя сульфолана, в котором скорости как гетерогенного переноса Заряда, так и гомогенных химических реакций сильно замедлены по сравнению с другими растворителями, что позволяет увеличить время жизни промежуточных анаон-радикальных частиц [111. [c.8]

    Исследования ЭХЛ осуществляют с помощью специального электрохимического комплекса, особенностью которого является возможность одновременной регистрации вольтамперограмм и кривых интенсивность ЭХЛ-потенциал. Для этого он содержит программный генератор импульсов и электрохимический программатор. Первый генерирует импульсы с длительностью и интервалами между импульсами от 1 МКС до 1000 с и амплитудой и шульсов от О до 10 В. Он предназначен для изучения кинетики жидкофазной ЭХЛ в условиях поочередной генерации анион- и катион-радикалов органолю шнофора на поверхности электрода. Отличительной особенностью генератора является полное отключение ЭХЛ-ячейки от источника электрической энергии на время пауз, что позволяет изучать процессы гомогенных химических реакций с участием анион- и катион-радикалов исследуемого соединения в условиях отсутствия гетерогенных электрохимических реакций. Высокое быстродействие генератора позволяет изучать кинетику быстрых электрохимических и химических реакций, сопровождающихся ЭХЛ. [c.148]

    Термин химическое растворение неправильно передает и даже искажает сущность рассматриваемого процесса. Поскольку в чтом случае скорости катодной и анодной реакций зависят не только от обычных переменных химической кинетики — концентрации и температуры, — но также и от величины потенциала на границе раздела металл/раствор, такой процесс следует рассматривать как чисто электрохимический. В советской литературе он получил название гомогенно-электрохимического , — Прим. ред. [c.355]


Смотреть страницы где упоминается термин Кинетика гомогенных химических электрохимической реакции: [c.226]    [c.58]    [c.532]    [c.185]   
Основы полярографии (1965) -- [ c.184 , c.186 ]




ПОИСК





Смотрите так же термины и статьи:

Гомогенная химическая реакция

Гомогенные кинетика

Кинетика гомогенных реакций

Кинетика гомогенных химических

Кинетика гомогенных химических реакци

Кинетика гомогенных химических реакций

Кинетика химическая

Кинетика химических реакций

Кинетика электрохимическая

Реакции гомогенные

Электрохимические реакции



© 2025 chem21.info Реклама на сайте