Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Термодинамика первый постулат

    Формулировки второго закона термодинамики. Второй закон термодинамики, как и первый, является постулатом, обоснованным большим опытом, накопленным человечеством. Он выражается разными, но по сути эквивалентными формулировками. В качестве одной из них принят постулат Клаузиуса (1850 г.) теплота не может пере- [c.90]

    Вывод о недостаточности первого начала термодинамики для определения направления и предела протекания процессов привел к установлению второго начала термодинамики. Второе начало термодинамики, так же как и первое начало, является постулатом, обобщением опытных данных. Доказательством второго начала может служить то, что все выводы, вытекающие из него, до сих пор всегда находили подтверждение на опыте. В 1824 г. С. Карно установил основные положения второго начала термодинамики. В середине XIX в. Клаузиус, Томсон и Максвелл показали, что второе начало термодинамики — один из наиболее общих законов природы .  [c.109]


    Формулировки второго закона термодинамики. Второй закон (начало, принцип) термодинамики, как и первый, был установлен как постулат, обоснованный опытным материалом, накопленным человечеством доказательством второго закона служит то, что свойства термодинамических систем не находятся в противоречии ни с ним самим, ни с каким-либо из следствий, строго вытекающих из него. Второй закон был изложен в работах Клаузиуса (1850) и В. Томсона (Кельвин) (1851). Можно дать разные формулировки второго закона, ио существу равноценные. [c.212]

    Третий закон термодинамики. Калориметрическое определение абсолютной энтропии вещества. В 1906 г. В. Нернст пришел к выводу, что изменение энтропии многих химических реакций вблизи температуры О К пренебрежимо мало. Позднее М. Планк (1912), Льюис и Рендалл (1923) высказали не связанное с первым и вторым законами термодинамики и экспериментально не доказуемое утверждение (постулат) о том, что при абсолютном нуле энтропия 5о чистого кристаллического вещества равна нулю. В отличие от первого и второго законов из постулата Планка нельзя вывести новые фундаментальные понятия, подобные по значимости энтальпии и энтропии. Однако предсказание Иш5 = О настолько хорошо согласуется с опытом и г-о [c.97]

    Первый постулат термодинамики неравновесных процессов (ТИП) — постулат о полном переходе потерянной работы в теплоту  [c.306]

    Физические и химические явления исследуются в термодинамике главным образом с помощью двух основных законов, называемых первым и вторым началами термодинамики. Первое начало следует из закона сохранения энергии и материи. Второе начало характеризует направление процессов. В XX в. был открыт третий закон термодинамики, который не имеет такого широкого применения, как первый и второй, но важен для теоретического анализа химических процессов. Известно еще нулевое начало (закон) термодинамики. Все законы термодинамики являются постулатами и проверены многовековым опытом человечества. [c.12]

    Первый закон рассматривается в термодинамике как постулат, вытекающий из суммы всего человеческого опыта и не требующий теоретических доказательств. Предложено много различных формулировок первого за- [c.28]

    Мы детально рассмотрим наиболее общую формулировку аксиом термодинамики необратимых процессов, принадлежащую Онзагеру. Из нее можно вывести остальные две формулировки. Онзагер принял три постулата. Первый постулат позволяет описать потоки. В рассматривавшемся выше примере падающих шариКОВ их поток ] (число шариков, пересекающих единицу поверхности в единицу времени) определяется уравнением У = Су, где С — концентрация шариков, а у — скорость их движения. [c.414]


    Первое начало термодинамики есть закон сохранения энергии изолированной системы. Оно не выведено из каких-либо более простых положений, а является обобщением многочисленных непротиворечащих ему наблюдений. Его следует рассматривать как постулат, справедливый для любой изолированной системы. При применении первого начала к закрытым системам подразумевается, что после переноса теплоты все процессы в закрытой системе идут, как в изолированной. (Обмен энергией с окружающей средой можно считать мгновенным время в термодинамических процессах исключено.) [c.24]

    Второй закон термодинамики так же, как и первый, формулируется с привлечением нескольких постулатов. Если постулаты первого закона термодинамики отражали закон сохранения энергии, то постулаты второго закона отражают принцип минимума свободной энергии и качественную неэквивалентность теплоты и работы в приложении к конкретным термодинамическим процессам. Наибольшую известность получили следующие постулаты. [c.87]

    Ряд следствий, вытекающих из него, имеет большое значение для физической химии и для решения различных производственных задач. Расчеты энергетического и, в частности, теплового баланса, расчеты тепловых эффектов различных процессов могут быть осуществлены с помощью этого закона. Первый закон термодинамики является постулатом он не может быть по существу доказан логическим путем, а вытекает из суммы всего человеческого опыта. [c.187]

    Клаузиус дал следующую формулировку второго начала термодинамики теплота не может переходить сама собой от более холодного тела к более теплому. Позднее слова сама собой Клаузиус заменит другими — без компенсации , что означает без каких-либо изменений термодинамического состояния рабочего тела или других привлекаемых к участию в процессе тел. Такая формулировка второго закона термодинамики именуется постулатом Клаузиуса. Справедливость постулата Клаузиуса в его первой формулировке представляется самоочевидной и обеспечивается огромной совокупностью опытных данных, связанных, в первую очередь, с наблюдениями, и можно непосредственно убедиться, что это заключение имеет силу при всех обстоятельствах. Этот постулат Клаузиуса надо понимать в широком аспекте. Ибо, как Клаузиус неоднократно и подробно разъясняет, — это основное положение ни в коем случае не должно просто означать, что тепло непосредственно не переходит от более холодного тела к более теплому, последнее само собой понятно и следует уже из определения температуры. Настоящий смысл положения Клаузиуса заключается в том, что тепло вообще никаким способом, с помощью какого бы то ни было процесса, не может быть перенесено с более холодного тела на более теплое, без того, чтобы не осталось других изменений ( компенсации ). Только пользуясь этим более широким толкованием положения Клаузиуса, можно, исходя из него, делать заключение относительно каких угодно природных процессов .  [c.89]

    Как уже упоминалось, сущность термодинамического метода исследования состоит в использовании законов термодинамики, являющихся постулатами, установленными в результате обобщения большого числа опытных фактов. Одним из таких постулатов является первый закон термодинамики. Первый закон термодинамики является выражением в настоящее время всем хорошо известного закона сохранения и превращения энергии в применении к термодинамическим процессам. Остановимся на нескольких формулировках первого закона термодинамики. [c.60]

    Роль первого постулата термодинамики необратимых процессов играет предположение о локальном равновесии во всех частях изучаемой системы. Согласно этому предположению неравновесную систему можно представить в виде совокупности макроскопически малых элементов объема, к каждому из которых допустимо применять обычные термодинамические методы — указать для них локальную температуру, давление, вычислить энтропию и т. п. Это позволяет задавать для неравновесной системы поле термодинамических интенсивных параметров (обобщенных сил) с указанием значений этих параметров в окрестностях каждой точки изучаемой системы. Неравновесность системы выражается в том, что в полях термодинамических обобщенных сил будут наблюдаться потоки соответствующих им координат состояний. Такие потоки описывают применяемыми в физике непрерывных сред дифференциальными уравнениями переноса. Это усложняет математическое описание неравновесной системы по сравнению с ее описанием в классической термодинамике. Однако общие методы термодинамики необратимых процессов можно проиллюстрировать на достаточно простых примерах, не усложняя разбор физического смысла проблемы сравнительно сложным аппаратом математической физики явлений переноса. [c.283]

    Тепловая теорема Нернста не является необходимой для решения задач о тепловых машинах и других чисто физических проблем, но составляет неотъемлемую часть химической термодинамики. Первая вполне удовлетворительная формулировка третьего закона была дана Льюисом и Рэндаллом [379, стр. 448] Если принять энтропию всякого элемента в некотором кристаллическом состоянии при абсолютном нуле температуры равной нулю, то каждое вещество имеет конечную положительную энтропию-, однако при абсолютном нуле температуры энтропия может обращаться-в нуль и действительно становится равной нулю в случае совершенных кристаллических веществ . В связи с определением совершенного кристаллического вещества третий закон является единственным постулатом термодинамики, который требует по крайней мере частичного рассмотрения микроскопической природы вещества. Таким образом, при помощи методов классической термодинамики нельзя достичь полного понимания третьего закона для этого требуется применение квантовой статистики, о чем пойдет речь в следующем разделе. Коротко говоря, методами статистической термодинамики было показано, что энтропия системы непосредственно связана с ее количественно выражаемой вероятностью. Неупорядоченность в природе более вероятна, чем упорядоченность, а, следовательно, состояние максимальной упорядоченности имеет минимальную вероятность и об-ладает соответственно минимальной энтропией. Поэтому состояние нулевой энтропии соответствует совершенному порядку, достигаемому только при 0° К, так что совершенное кристаллическое вещество — это такое вещество, в котором не наблюдается какой бы то ни было неупорядоченности. Такое вещество имеет следующие характерные особенности а) абсолютная-химическая чистота б) упорядоченное расположение ионов, атомов или молекул в регулярной решетке в) упорядоченная ориентация всех многоатомных групп по отношению к решетке и г) упорядоченное положение магнитных моментов атомов. Многие факторы могут вызывать несовершенства реального состояния вещества вблизи абсолютного нуля. Любая неупорядоченность расположения молекул в узлах решетки приводит [c.12]


    Первый закон термодинамики является постулатом и не доказывается логическим путем. Справедливость этого закона подтверждается тем, что ни одно из следствий, вытекающих из него, не находится в противоречии с экспериментальными данными. [c.94]

    В связи с первым законом термодинамики мы пришли к понятию внутренней энергии, которая является функцией состояния. В 3 было показано, что изменение внутренней энергии можно измерить, так как оно равно количеству поглощенной теплоты или количеству совершенной работы при соответствующих условиях. Но первый закон не дает никаких указаний относительно направления самопроизвольно идущих процессов. Для того чтобы установить критерий, позволяющий решать, в каком направлении может идти самопроизвольное превращение системы, мы должны обратиться ко второму закону термодинамики, который, как и первый закон, является обобщением опыта человечества. Второй закон не может быть выведен теоретически и принимается как постулат. Имеется несколько формулировок второго закона термодинамики. Так, Клаузиус (1850 г.) ввел в термодинамику следующий постулат теплота не может сама собой переходить от холодного тела к горячему . Формулировка Планка гласит невозможно построить периодически действующую машину, вся деятельность которой сводится к поднятию тяжести и охлаждению теплового резервуара . Иными словами, Планк утверждает, что теплота не может самопроизвольно переходить в работу без каких-либо других изменений в системе. Эта мысль кроется и в постулате Клаузиуса, так как при самопроизвольном пе- [c.40]

    Первое начало рассматривается термодинамикой как постулат, поскольку оно не может быть выведено или доказано какими-либо логическими приемами. Содержание первого начала термодинамики вытекает из обобщения многолетнего опыта, накопленного человечеством в результате практической деятельности. Первое начало термодинамики не сразу обрело под собой твердую почву, однако в настоящее время его справедливость признана всеми естествоиспытателями, поскольку ни одно из следствий, к которым оно приводит, не находится в противоречии с опытом. Исторически сложилось несколько формулировок первого начала термодинамики, которые рассматривают объективно существующий закон с различных сторон и свидетельствуют о том, что исследователи приходили к его формулировке разными путями. [c.13]

    Из первого начала термодинамики вытекает, конечно, принципиальная неосуществимость некоторых процессов. На этом основании Уиттекер причислил первое начало термодинамики к постулатам бессилия [24]. [c.111]

    Среди физических и химических теорий термодинамика занимает особое место. По мнению Эйнштейна, термодинамика является единственной универсальной физико-химической теорией, которой никогда не грозит опасность устареть. Исключительное положение классической термодинамики связано с тем, что она базируется не на постулатах или допущениях, пусть крайне правдоподобных и остроумных, а на экспериментально обнаруженных объективных законах, нашедших выражение в основных началах термодинамики. Первое начало выражает идею сохранения энергии, а второе указывает на направление самопроизвольного протекания процесса. [c.8]

    Тепло не может самопроизвольно переходить от менее нагретых тел к более нагретым без затраты работы над системой. Этот принцип был сформулирован еще Клаузиусом, постулаты которого стали позднее известны как первый и второй законы термодинамики. Эти постулаты приведены в начале главы в качестве эпиграфа Энергия мира не изменяется. Энтропия мира стремится к максимуму . [c.92]

    В рамках строгой термодинамики постулат Планка является отдельным утверждением, не вытекающим из двух первых начал термодинамики, однако в рамках молекулярно-статистических представлений его можно понять как следствие формулы Больцмана (1.11.1), связывающей энтропию с термодинамической вероятностью. Действительно, если энтропия 8 равна  [c.104]

    Первый закон термодинамики. Первый закон термодинамики является постулатом он не может быть по существу доказан логическим путем, а вытекает из суммы человеческого опыта. Справедливость этого закона доказывается тем, что ни одно из следствий, к которым он приводит, не находится в противоречии с опытом..  [c.248]

    Можно легко показать, что если Л>0, т. е. если машина совершает работу, то Р]>0 и С2>0. Для доказательства допустим, что количество теплоты, отданной при температуре 2, меньше или равно нулю. Это означает, что машина поглощает во время цикла от источника с температурой Н теплоту 01% Тогда можно было бы привести два источника в тепловой контакт и позволить теплоте самопроизвольно переходить от более горячего источника с температурой к более холодному с температурой /2 до тех пор, пока последний не получит такое же количество теплоты, какое передал машине во время цикла. Так как источник с температурой 2 остался бы неизменным и машина снова была бы в своем первоначальном состоянии, то единственным конечным результатом процесса было бы превращение в работу А теплоты, поглощенной от одного источника, который всюду имел температуру ). Поскольку это противоречит постулату Кельвина, то должно быть Q2>0. Остается доказать, что С >0. Так как машина возвращается в первоначальное состояние, то из первого закона термодинамики имеем [c.98]

    Второй закон термодинамики, так же как и первый закон, является постулатом. Он тоже формулируется на основе обобщения большого количества опытных фак- [c.78]

    Термодинамика базируется на нескольких постулатах, основными из которых являются первый и второй законы. Эти постулаты нельзя вывести из более общих законов. Однако их можно считать твердо установленными фундаментальными законами природы, поскольку многовековой житейский, производственный и научный опыт человечества показал, что процессы, противоречащие этим постулатам или основанным на них законам, никогда не наблюдаются. [c.18]

    Все изложенное, как уже было подчеркнуто, логически не вытекает из первого и второго начала термодинамики, а требует некоторого дополнительного постулата. Таким является уравнение (III.5.2) [или уравнения (III.5.7) и (III.5.8)]. Этот постулат получил название теплового закона (или тепловой теоремы) Нернста. [c.103]

    Классическая термодинамика содержит в своей основе небольшое число постулатов, выведенных из опытов и наблюдений. В частности, появление первого закона связано с безуспешными попытками построения вечного двигателя, к сожалению, продолжающимися и до настоящего времени. На основе этих постулатов чисто логическим и математическим путем устанавливается множество частных закономерностей, позволяющих предсказать возможное направление различных процессов и свойства разнообразных веществ. Здесь нет места никаким гипотезам и моделям. [c.7]

    Постулат Планка часто называют третьим законом термодинамики. Не отрицая важности этого постулата и не оспаривая последнего термина, все-таки укажем, что по своему общетеоретическому и практическому значению постулат Планка значительно уступает первому и второму законам термодинамики. [c.84]

    Этот постулат не вытекает из первого начала термодинамики и является самостоятельным законом природы, который находится в полном соответствии со всем опытом человечества. Однако формулировка постулата, данная Клаузиусом, допускала неоднозначное толкование этого закона. Поэтому в дальнейшем развитии учения о втором начале термодинамики были высказаны другие формулировки постулата второго начала, более строгие. Планку принадлежит, вероятно, наиболее удачная  [c.25]

    I. в основе расчета энтропии вещества по термическим данным лежит тепловой закон Нернста или постулат Планка, согласно которым энтропия твердых чистых кристаллических веществ при абсолютном нуле равна нулю 5о=0 (см. разд. I. 10). Это положение не следует из первого и второго начал термодинамики, а является самостоятельной закономерностью, базирующейся на экспериментальных данных и представлениях статистической механики. Подробное изучение энтропий при низких температурах показало, что постулат Планка соблюдается далеко не для всех веществ, т. е. энтропия многих из них при абсолютном нуле имеет некоторое небольшое значение (порядка 3—4 Дж/моль-К). Однако, поскольку для расчета равновесий нужны значения энтропии не самих веществ, участвующих в реакции, а их алгебраическая сумма, то значение Д5о оказывается в большинстве случаев очень малым, что и позволяет произвести вычисления с достаточной точностью, если ею пренебречь. Ввиду того, что вблизи абсолютного нуля все вещества находятся в твердом состоянии, постулат Планка позволяет рассчитать энтропии при любой заданной температуре. [c.378]

    ГВзаймосвязь между внутренней энергией, работой и теплотой устанавливается на основе первого начала термодинамики. Первое начало термодинамики представляет собой постулат, вытекающий из многовекового опыта человечества. Существует ряд формулировок первого начала термодинамики, которые равноценны друг другу и вытекают одна из другой. Если одну из них рассматривать как исходную, то другие получаются из нее как следствия. [c.86]

    Справедливость принципа Каратеодори для любой системы можно доказать исходя из постулата Томсона. Достаточно доказать,. что если нарушается принцип Каратеодори, то не выполняется постулат Томсона. Рассмотрим два состояния а и Ь) системы в координатах (р, V) (рис. 2.16). Пусть переход системы из состояния а в состояние Ь происходит по изотерме асЬ за счет поглощенной из термостата теплоты Q, причем согласно первому закону термодинамики Q = AU+A, где А — работа, совершенная системой. Если принцип Каратеодори не является справедливым, можно вернуться в состояние а по адиабате Ьс1а. В этом процессе Рад = 0, а так как Сад = —Аи+А где Л —работа в адиабатическом процессе, то Q=A + A. Нарушив принцип Каратеодори, мы превратим теплоту термостата в эквивалентное количество работы в циклическом процессе, что является нарушением второго закона термодинамики (противоречит постулату Томсона). [c.55]

    ТЕМПЕРАТУРА, физическая величина, характеризующая. состояние термодинамич. равновесия макроскопич. системы. Одинакова для всех частей изолиров. системы, если нет перехода энергии (теплоты), от одной части системы к другой. Если изолиров. система не находится в равновесии, то с течением времени переход энергии (теплоты) от более нагретых частей системы к менее нагретым приводит к выравниванию Т. (первый постулат, или нулевое начало термодинамики). Т. определяет распределение образующих систему частиц по скоростям и энергиям (распределение Максвелла — Больцмана), степень ионизации газа (см. Плазма) я др. св-ва в-ва. [c.562]

    Первый постулат о термодинамическом равновесии приводит не только к нижнему пределу применимости термодинамики (системы с малым число.м частиц Л - 1), но и ограничивает ее применение к реальным системам сверху, так как для систем галактических размеров этот юстулат не имеет места не учитываемое обычно в земных условиях гравитационное взаимодействие между частицами в случае очень больших систем приводит к качес1венно. новому их поведению — возникновению непрерывно сменяющих друг друга больших флуктуаций. Такие системы одинаково часто как приближаются к некоторому среднему равновесию, так и удаляются от него. [c.18]

    Первое из них известно в термодинамике под названием постулата Гиббса Энергия равновесной системы минимальна- ). Очевидно, его обращение дает уже известный из второго начала критерий равновесия (IV,9), так как условие адиабатности изолированной системы равносильно требованию постоянства энергии и объема при протекании процесса. [c.117]

    Первый закон термодинамики формулируется по-разному. Одна формулировка выражается соотношением эквивалентности А = JQ Другая, частная формулировка, в качестве постулата, вытекающего из опыта, утверждает следующее в адиабатически изолированной си стеме при переходе из одного определенного состояния в другое опреде ленное состояние работа не зависит от того, как совершается процесс а зависит только от начального и конечного состояния системы, т. е Ai = Ai — Ад... = onst. Эта формулировка равноценна невозмож ности вечного двигателя 1-го рода, т. е. устройства, позволяющего получать положительную работу без какого-либо изменения в состояниях тел. [c.73]


Смотреть страницы где упоминается термин Термодинамика первый постулат: [c.80]    [c.562]    [c.77]    [c.77]    [c.40]    [c.17]    [c.36]    [c.103]    [c.70]    [c.11]   
Химический энциклопедический словарь (1983) -- [ c.562 ]

Большой энциклопедический словарь Химия изд.2 (1998) -- [ c.562 ]




ПОИСК





Смотрите так же термины и статьи:

Термодинамики первый



© 2025 chem21.info Реклама на сайте