Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ионообменная хроматография аминокислот буферные растворы

    В последнее время появилась возможность определять аминокислотный состав белков с помощью автоматических аминокислотных анализаторов. Когда в 1948 г. Мур и Стейн [551 в дополнение к классическим методам органической химии, а также манометрическому и бактериологическому анализу ввели ионообменную хроматографию, наступил поворотный момент в развитии химии аминокислот. В основу работы созданных сотрудниками Рокфеллеровского института современных автоматических аминокислотных анализаторов была положена ионообменная хроматография. Принцип работы этих приборов заключается в следующем. Исследуемый белок гидролизуют, затем гидролизат подвергают хроматографии на смоле типа дауэкс 50 х8 в Na-форме. Элюирование производят с помощью непрерывной подачи буферного раствора. Выходящий из колонки элюат попадает в пластмассовую ячейку особой формы, где он смешивается с раствором нингидрина. Подачу нингидрина осуществляет специальный насос, работающий синхронно с насосом, подающим буферный раствор на колонку. Затем смесь элюата с нингидрином проходит через тефлоновый капилляр, который погружен в кипящую баню. В этих условиях в растворах происходит нингидриновое окрашивание, интенсивность которого измеряется в проточной кювете спектрофотометрически. Поглощение света регистрируется самописцем. Применение сферических смол [80] позволило сократить время исследования одного образца примерно в четыре раза, а использование особых ячеек сделало вполне допустимыми для анализа очень малые количества исследуемого вещества — порядка 0,01—0,05 мкмоля [38]. Введение одноколоночной процедуры значительно упрощает метод [9, 29, 43, 60]. С помощью этой методики в одной и той же пробе можно определить кислые, нейтральные и основные аминокислоты, что не только экономит исследуемый материал, но и повышает точность и сокращает время исследования. Работая на стандартном аминокислотном анализаторе и пользуясь некоторыми модификациями известных методов, можно полностью закончить анализ одного вещества в течение 3 ч [91. [c.32]


    Рааделение амино слот на ионообменниках основано на способности аминокислот образовывать соли с кислотами и щелочами. Подбирая соответствующие катиониты или аниониты, можно быстро и с успехом разделить гидролизат белка, пользуясь для этого 2,5—3,5 мг белка. Ионообменную хроматографию хорошо сочетать с элюционным или вытеснительным анализом. Мур и Штейн пользуются для этого катионитной смолой сульфополистирольного типа Дауэкс-50, через колонку которого пропускают аминокислоты последние вымывают затем соответствующими буферными растворами. Для разделения достаточно 3 мг аминокислот. [c.481]

    После полного гидролиза белка производится количественное онределе-ние каждой из аминокислот, присутствующих в гидролизате. Для разделения аминокислот чаще всего применяется метод ионообменной хроматографии. В качестве ионообменника обычно используют сульфополистирольный катионит. Смесь аминокислот вносится в верхнюю часть колонки при pH 3 в этих условиях индивидуальные аминокислоты полонштельно заряжены. Аминокислоты в форме катионов сорбируются на сульфополистирольной смоле (содержащей группы — SOg Na ), замещая часть ионов натрия, и удернги-ваются на материале колонки электростатическими силами. Очевидно, что прочность сорбции аминокислоты возрастает с увеличением ее основности. После внесения смеси начинается элюция аминокислот при постепенном увеличении pH и 1тонной силы буферных растворов, пропускаемых через колонку. В этих условиях положительный заряд на аминокислотах постепенно нейтрализуется и ионные взаимодействия ослабляются. Первыми с колонки снимаются кислые аминокислоты (глутаминовая и аспарагиновая кислота), затем нейтральные и, наконец, основные. С помощью этого метода можно разделять все аминокислоты, обычно встречающиеся в белках, поскольку прочность сорбции аминокислоты смолой зависит как от ионных, так и от неионных взаимодействий. Сульфополистирольный катион адсорбирует аминокислоты достаточно избирательно, так что все нейтральные аминокислоты, которые нельзя разделить с помощью ионного обмена, тем не менее элюируются с колонки в разных фракциях. Индивидуальные аминокислоты, элюируемые с колонки, собираются автоматическим коллектором фракций. Затем их количественно определяют путем измерения интенсивности окраски, возникающей при действии нингидрина. В настоящее время промышленность выпускает несколько типов автоматических амино- [c.57]


    С помощью тонкослойной ионообменной хроматографии можно разделить-16 аминокислот, присутствующих в белковом гидролизате, используя всего лишь один буферный раствор. В буферном растворе Б (табл. 10), имеющем относительно высокую концентрацию ионов цитрата, смесь из 16 аминокислот делится на 15 компонентов. Картина такого разделения показана на фнг. 53. Из 16 аминокислот не разделяются только Тре и Сер. [c.255]

    При ионообменной хроматографии отношение количества носителя к образцу обычно бывает более высоким, чем при адсорбционной хроматографии. Так, например, для разделения аминокислот используют при навеске 1 мг колонки с внутренним диаметром 0,9 см и высотой 150 см, что соответствует соотношению адсорбента к иониту, равному 1 100 ООО. При препаративном разделении это соотношение колеблется приблизительно в пределах от 1 400 до 1 4000. Внутренний диаметр колонки следует выбрать с таким расчетом, чтобы его отношение к высоте составляло приблизительно от 1 50 до 1 100. Для разделения сильноосновных веществ на сильнокислом катионите иногда выгодно это соотношение уменьшить до 1 15. Благодаря изменению рП или при использовании некоторых буферных систем столб ионита может сильно набухать. Поэтому в колонке над столбцом ионита всегда оставляют достаточное свободное пространство, которое заполняется буферным раствором. [c.553]

    Разделение аминокислот методом ионообменной хроматографии. Анализ смеси аминокислот начинают с разделения этой смеси на компоненты методом ионообменной хроматографии. Небольшое количество смеси вносят в вфхнюю часть колонки, заполненной частицами полистирола, содержащими остатки сульфоновой кислоты (см. рис. 5-14). Затем через колонку пропускают буферный раствор. Аминокислоты проходят через колонку с разными скоростями, поскольку их движение тормозят два фактора 1) электростатическое притяжение между отрицательно заряженными остатками сульфоновой кислоты и положительно заряженными функциональными группами аминокислот и 2) гидрофобное взаимодействие между боковыми цепями аминокислот и сильно гидрофобным остовом полистирольной смолы. Для каждой из выписанных ниже пар аминокислот определите, какая аминокислота данной пары будет сходить с колонки первой (т.е. испытывать наименьшее торможение) при пропускании через колонку буфера с pH 7,0. [c.136]

    Ароматические и основные аминокислоты на пластинке Фик-сиоц 50 X 8 разделяются при одномерной хроматографии в цитратном буферном растворе pH 5,23 с концентрацией Ыа" 0,35 М (буферный раствор В, табл. 10), который используется в двухколоночной системе аминокислотного анализатора. Типичная хроматография такого разделения представлена на фиг. 49. Колебания pH и концентрации буферного раствора не существенны для фракционирования. Хроматографию проводят при комнатной температуре без предварительного уравновешивания. В камеру наливают слой буферного раствора высотой примерно 1 см. При хроматографии фронт буферного раствора должен подняться на высоту 15 см. Если пластинка не уравновешена, на это уходит около 2 ч. На уравновешенной пластинке (см. буферный раствор для уравновешивания, табл. 10) это происходит за несколько ми-нут. На примере разделения ароматических и основных аминокислот можно оценить Лиз высокую разрешающую спо-Гис обность ионообменной хроматографии в тонком слое по сравнению с соответствующей колоночной техникой. Известно, что на малой колонке в этом же буферном растворе (т. е. 0,35 М Ыа+, pH 5,23) ароматические аминокислоты не отделяются друг от друга. [c.250]

    Смесь аминокислот разделяется методом ионообменной хроматографии на колонке, заполненной сульфированной полистирольной смолой. Колонка промывается буферными растворами с последовательным повышением нх pH и концентрации. Время удерживания каждой аминокислоты строго определенно и зависит от степени ее ионизации. [c.35]

    В последнее время наряду с детектированием по реакции с нингидрином широкое распространение получило детектирование по флуоресценции продуктов реакции с флуорескамином [93]. Реакция идет при комнатной температуре, а в остальном анализ напоминает обычную схему с использованием нингидрина [94]. Анализируемые вещества разделяются по колонке с ионообменной смолой, затем проходят через реакционную спираль (реактор), а флуоресценция регистрируется с помощью флуориметра. Показано, что эту систему можно использовать для анализа белковых гидролизатов [95, 96]. Схема модифицированного анализатора аминокислот приведена на рис. 32.11. Для работы на одной колонке необходимо три микронасоса первый — для подачи буферного раствора на колонку второй — чтобы довести величину pH элюата до значения 9 и третий предназначен для смешивания элюата с реагентом, представляющим собой раствор флуорескамина в ацетоне. Скорость реакции достаточно высока, что позволяет использовать короткую реакционную спираль. Далее смесь проходит через проточную кювету флуориметра, и интенсивность флуоресценции регистрируется самописцем. Одновременно много внимания было уделено выделению продуктов реакции аминов с флуорескамином, обладающих низкой полярностью, для анализа которых могла оказаться пригодной высокоскоростная хроматография. Более того, в этом случае можно было бы обойтись без реакционной спирали. Такой путь оказался приемлемым для анализа первичных аминов [97—99]. Что касается аминокислот, то большинство из них, вопреки ожиданиям, давали с флуорескамином два продукта реакции, соотношение которых определялось природой аминокислоты. [c.340]


    Эффективность разделения неорганических веществ методами зонного электрофореза и ионообменной хроматографии сильно зависит от pH используемого буферного раствора и от правильного выбора комплексообразующего реагента. При разделении органических кислот, аминокислот и многих других веществ биологического характера изменение pH влияет на разделение значительно сильнее, чем комплексообразование. [c.491]

    Степень прочности сорбции и десорбции на смоле разных аминокислот, определяемая главным образом величинами зарядов молекул, различна. Наиболее прочно на смоле сорбируются диаминокислоты и наименее прочно — дикарбоновые аминокислоты. Разделение аминокислот при ионообменной хроматографии происходит при десорбции их со смолы элюирующими буферными растворами, отличающимися от исходного буферного раствора большими величинами pH и (или) ионной силы. Обычно для элюции кислых и нейтральных аминокислот используют Ыа-цитратные буферные растворы с pH 3,25 и 4,25. Для десорбции со смолы наиболее прочно связанных (основных) аминокислот используют более щелочной Ыа-цитратный буферный раствор со значением pH 5,28 и более высокой ионной силой (0,35 М). [c.133]

    Ионообменную хроматографию можно применять для разделения водорастворимых ДНФ-аминокислот. Хейнрих и Бугна [12] проводили разделение на термостатированной (50 °С) колонке (длиной 15—20 см) с катионитом амберлит ШС-50 (Bio-Rex 70 Na+ —400 меш), элюируя стандартным буферным раствором (pH 5), предназначенным для работы на анализаторе аминокислот Te hni on, со скоростью 0,5 мл/мин. Оптическую плотность элюата регистрировали при К 360 нм на проточном денситометре. ДНФ-аминокислоты появлялись на выходе колонки (через 30 мин — 1 ч) в следующем порядке ос-ДНФ-ли-зин, 8-ДНФ-лизин, ДНФ-аргинин, ди-ДНФ-гистидин, ДНФ-трип-тамин, ди-ДНФ-лизин. При использовании анализатора Te hni on нижний предел определения составляет 0,01—0,05 мкмоля. [c.365]

    Разделение смеси аминокислот, приведенное на рис. 5.17, является примером ионообменной хроматографии при постоянной концентрации Na+ и трех различных значениях pH. Часто оказывается невозможным точно подобрать необходимые условия для удовлетворительного разделения неизвестной смеси ионов. По этой причине во многих случаях разделение на ионите проводят с помощью градиентного элюирования, при котором состав буферного раствора, поступающего в колонку, изменяют постепенно (либо относительно концентрации неорганического иона, участвующего в обмене с функциональными группами смолы, либо относительно pH), что приводит к изменению сродства растворенных веществ к иониту. На рис. 6.18 в качестве примера использования градиентного э.чюирования приведена картина разделения смеси белков. [c.155]

    При изучении метаболических процессов in vitro возникает необходимость в применении нефизиологических буферных растворов направленное изменение pH может значительно облегчить изучение таких типов молекул,, как аминокислоты, белки и нуклеиновые кислоты с помощью электрофореза и ионообменной хроматографии. [c.19]


Смотреть страницы где упоминается термин Ионообменная хроматография аминокислот буферные растворы: [c.41]    [c.29]   
Методы химии белков (1965) -- [ c.72 ]




ПОИСК





Смотрите так же термины и статьи:

Буферная

Буферные растворы

Буферные растворы для ионообменной

Буферные растворы для ионообменной хроматографии

Ионообменная хроматографи

Хроматография аминокислот

Хроматография ионообменная



© 2024 chem21.info Реклама на сайте