Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Платина определение гравиметрическое

    Определение 21,52—40,89 мг КзРе ( N)в методом кулонометрии при контролируемом потенциале [221] дает более точные результаты, чем иодометрический или гравиметрический методы. При определении иона Ре (СК)в с использованием серебряного (на платине) анода и платинового катода в ацетатном буферном растворе присутствие иона С1 не мешает. Ошибки определения [c.27]


    Муравьиная кислота — реактив для выделения платины и палладия, для отделения бериллия от алюминия и железа, для разделения вольфрама и молибдена уксусная кислота применяется для определения молекулярной массы веществ, для приготовления буферных растворов, как среда и ацетилирующее средство пропионовая кислота— для определения ароматических аминов антраниловая кислота — для обнаружения и гравиметрического определения кадмия, кобальта, меди, ртути, марганца, никеля, свинца и цинка бензойная кислота служит эталоном в колориметрии 2,4-диокси-бензойная кислота применяется для колориметрического определения железа, титана и других элементов лимонная кислота — в качестве сильного маскирующего комплексообразователя, для приготовления буферных смесей, определения белка в моче, как растворитель фосфатов при анализе удобрений молочная кислота — при полярографическом определении металлов, при электролитическом осаждении меди в присутствии железа, цинка и марганца нафтионовая кислота — для колориметрического определения нитрат иона, в качестве флуоресцирующего индикатора олеиновая кислота — для определения малых количеств кальция и магния, в титриметрическом анализе для определения жесткости воды пировиноградная кислота — для идентификации первичных и вторичных аминов, в микробиологии стеариновая кислота — для нефелометрического определения кальция, магния и лития сульфо-салициловая кислота — для колориметрического определения железа, в качестве комплексообразователя, для осаждения и нефелометрического определения белков трихлоруксусная кислота — как реактив на пигменты желчи и фиксатор в микроскопических исследованиях. [c.44]

    При работе с платиновыми электродами, используемыми для электро-гравиметрического определения меди, никеля и кобальта, следует соблюдать-общие правила обращения с. изделиями из платины перегибы и деформация электродов недопустимы. Если же от электрода или платинового контакта отломилась часть проволоки, она обязательно должна быть сдана лаборанту. Перед работой электроды необходимо тщательно очистить. Для этого их погружают на некоторое время в разбавленную (1 1) теплую азотную кислоту. Раствор азотной кислоты выливать не следует, так как им можно пользоваться для этой цели много раз. Затем электроды тщательно промывают сначала водопроводной, а затем дистиллированной водой, лучше всего путем погружения в налитую в стакан воду. После этого электроды погружают в этиловый спирт, этиловый эфир, а затем сушат несколько минут в сушильном шкафу или над горелкой, покрытой асбестовой сеткой. При промывании и высушивании электрод держат за самый конец стержня, который будет затем зажат клеммой. Прикасаться руками к рабочим частям электрода нельзя, так как жирные пятна от пальцев останутся не покрытыми медью, что вызовет увеличение плотности тока в частях электрода, оставшихся чистыми. После высушивания катод переносят в весовую комнату и после охлаждения на воздухе в течение 2—3 мин взвешивают на аналитических весах с точностью 0,1 мг. [c.217]


    Дейвис [244], видимо, первым применил хлорид олова (И) для колориметрического определения платины. Он определял визуально 2,5—100 мкг/мл платины. Окраска полностью развивалась за 10 или 15 мин и была устойчива в течение нескольких часов. Перед колориметрированием платину осаждали, отделяли, переводили в соль и затем растворяли в соляной кислоте. Для количеств платины, меньших 0,2 мг, колориметрический метод дает более точные результаты чем гравиметрический, а для больших количеств платины — наоборот. [c.242]

    Авторы [744] предложили методику колориметрического определения золота в цианистых растворах. Они утверждают, что для определения менее 0,04 мг золота колориметрирование слабокислых растворов с хлоридом олова(II) по точности и быстроте выполнения превосходит гравиметрическое пробирное определение. К сожалению, этот сомнительный вывод не подтвержден соответствующими данными. Однако несомненно, что конкуренция колориметрических методов с классическим пробирным анализом вполне возможна. Тем более удивительно, что до сих пор не получено данных, сравнивающих быстроту, точность и воспроизводимость какого-либо колориметрического, титриметрического или спектрального метода с пробирным методом определения золота или другого благородного металла в рудах. Сендел [108] нашел, что чувствительность метода с использованием хлорида олова (II) равна 0,05 мкг-см . Метод пригоден для анализа растворов, содержащих 10—100 мкг золота в объеме пе более 20 мл. Рекомендуемая концентрация кислоты 0,04 и., однако и для 1 н. кислоты результаты удовлетворительны. Интенсивность окраски измеряют без светофильтра. С зеленым светофильтром светопропускание немного ниже. Платина, палладий, рутений, теллур, селен, серебро, ртуть и др. мешают определению. [c.269]

    Для всех металлов группы платины найдены оптимальные условия их гравиметрического определения одновременно с углеродом и водородом Установлено, что после сухого окисления вещества палладий и платину можно определять в виде металла, не проводя дополнительного восстанов ления. Кроме того, палладий, а также родий и осмий, могут быть определены в виде окислов. Рутений и иридий рекомендуется определять в виде металла после восстановления водородом остатка вещества от сожжения. Осмий также можно определять в восстановленной форме. [c.297]

    Впервые микрометод определения серы был предложен Преглем. Используемый прибор и сам метод очень напоминают так называемый метод пустой трубки , уже описанный для определения содержания галогенов. Анализируемые соединения сжигают на поверхности металлической платины, используемой в качестве катализатора, а образовавшийся диоксид серы поглощают щелочным раствором пероксида водорода. Сульфат-ионы содержащиеся в растворе, определяют гравиметрически. [c.414]

    Метод с использованием хлорида олова (II) применяли для анализа бинарных сплавов, содержащих уран и менее 5% платины. Прн больших содержаниях платину определяли гравиметрически. Вагнер [700] и Шмуляковский [701] использовали хлорид олова(II) для определения платины в катализаторах. Струщинский и Хвастовская [166] предложили методику опре- [c.246]

    Наиболее часто используют бомбу Бертло — Маллера — Крокера, представляющую собой сосуд емкостью 300 мл с плотнонавин-чивающейся крышкой. Внутри стенки сосуда либо покрыты платиной, либо эмалированы. Крышка имеет два газовых канала питающий (для подвода кислорода под давлением 25 атм) и отводящий (для выпуска газов). Образовавшиеся при сгорании окислы серы поглощают предварительно залитой в бомбу водой и определяют гравиметрически. Количественное определение сероводорода, элементной серы, меркаптанов, дисульфидов, сульфидов и остаточной серы тиофенов, тиофанов и других соединений в нефти проводят по методу Фарагера, Морреля и Монрое. Испытуемый образец последовательно обрабатывают различными реагентами, удаляющими отдельные группы сернистых соединений. [c.209]

    Позже были изучены новые реагенты хлорид 2,4,6-трифенилпиридилия (ТФП) и нитрон [19]. ТФП (2%-ный раствор) образует в 0,2 М растворе НС1 осадки с иодидом, роданидом, нитрагом, перхлоратом, перманганатом, бихроматом, гексацианоферри-том(П) и хлоридными комплексами цинка, свинца, кадмия, олова (II), платины(IV) и золота (III). Осадки не образуют фторид, бромид, иодат, хлорат, сульфат, оксалат и хлоридный комплекс железа (III). Реагент можно использовать для гравиметрического определения 40—160 мг перхлората  [c.404]

    По данным Шампа, Фоконье и Дюваля [326], комплекс можно нагревать в температурном интервале 45—171°, а по данным Тасиро [327] — в пределах 100—200°. Эффективность этого гравиметрического метода определения палладия и отделения его от остальных платиновых металлов обсуждалась Эрсом и Бергом [328]. Эти авторы нашли, что потери при растворении комплекса незначительны они становятся заметными нри определении малых количеств палладия. Отделение от платины, родия и иридия наиболее успешно, когда содержание палладия намного превышает содержание примесей. [c.44]

    Согани и Бхаттачария [353] считают М-фенил-М-фенилазогид-роксиламин лучшим реагентом для гравиметрического определения палладия. Желто-коричневое соединение ( i2HioNsO)2Pd осаждалось в интервале pH 1,6—8 и имело хорошие физические характеристики оно может использоваться в качестве весовой формы и имеет удобный фактор пересчета. При длительном кипячении избыток реагента можно уменьшить, что является преимуществом метода. Этот реагент нового типа легко синтезируется, что позволит с успехом применять его вообще для определения катионов. Однако приведенные данные и методика не дают основания предпочесть его диметилглиоксиму и другим органическим осадителям. Для разделения палладия и платины необходимо выпаривать раствор, содержащий оба металла, до паров серной кислоты, что осложняет метод. Для устранения помех со стороны меди, которая обычно сопутствует платиновым металлам и затрудняет их определение, в данном случае предложено подкислять раствор до pH 2—2,5 для увеличения селективного осаждения палладия, что по сравнению с диметилглиоксимом ограничивает возможности метода. [c.51]


    Для всех платиновых металлов найдены оптимальные условия их гравиметрического определения одновременно с углеродом, водородом и другими гетероэлементами. Различия в физических свойствах этих металлов обусловили необходимость индивидуального подхода к определению каждого из них. Восстановление водородом до металла остатка, полученного в результате сожжения в контейнере, необходимо для иридия, родия и рутения. Палладий и платина выделяются в виде металла и не требуют дополнительного восстановления. Осмий взвешивают в виде оксида 0s04. Любой из металлов этой группы можно определить одновременно с галогенами (хлором, бромом или иодом) и ртутью. При одновременном присутствии хлора и серы их поглощают в гильзе с серебром при 750 °С. Привес гильзы рассчитывают как сумму масс С1 и SO4 в соотношениях, соответствующих числу атомов хлора и серы в молекуле анализируемого вещества. Соединения, включающие сочетание осмия и серы, не анализировались. [c.95]

    Разработаны серийно выполняемые микроаналитические гравиметрические методы одновременного определения углерода, водорода, металла группы платины и других гетероэлементов (ртуть, галоген) в одной навеске вещества. Для раздельного поглощения гетероэлементов, образующих во время сожжения нелетучие и летучие, но легко конденсируемые соединения, используются взвешиваемые поглотительные зоны, находящиеся в трубке для сожжения [4—6]. Свободно сочлененная система, состоящая из контейнера и двух кварцевых трубок (так называемых гильз), последовательно вставленных друг в друга, обеспечивает количественное поступление реакционных газов из контейнера в первую и вторую гильзу и затем в поглотительные аппараты для двуокиси уг,теродаи воды, находящиеся за пределами трубки для сожжения. Для конденсации OSO4 оказалось целесообразным применить вымораживание ее из газового потока после поглощения воды, т. е. вне трубки для сожжения. [c.298]

    Исследована возможность определения металлов группы платины после разложения их органических соединений сухим сожжением в атмосфере кислорода в кварцевом контейнере. Найдены условия, обеспечивающие удерживание всего металла в небольшой зоне поглощения и перевод его в удобную для дальнейшего определения форму. Установлена возможность гравиметрического определения всех металлов группы платины в элементном состоянии или в виде окиси. Разработаны гравиметрические методы одновременного определения С, Н, любого металла группы платины и некоторых других элементов (галогены, ртуть и др.) в микронавесках металлорганических соединений. [c.368]


Смотреть страницы где упоминается термин Платина определение гравиметрическое: [c.2]    [c.224]    [c.604]    [c.329]   
Аналитическая химия благородных металлов Часть 2 (1969) -- [ c.0 , c.2 , c.58 ]




ПОИСК





Смотрите так же термины и статьи:

Определение гравиметрически



© 2025 chem21.info Реклама на сайте