Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Металлы платино

    Элементарные стадии ряда приведенных реакций определяются бифункциональным характером катализаторов риформинга. С одной стороны, они содержат один или несколько металлов (платина, рений, иридий и др.), которые катализируют реакции гидрирования и деалкилирования. С другой [c.2]

    Изомеризация алканов. Наибольшее распространение получили низко-и высокотемпературные процессы изомеризации алканов на основе бифункциональных катализаторов, которые представляют собой металл (платина, палладий), нанесенный на носитель — окись алюминия, содержащую галоген (чаще фтор или хлор), или цеолиты. [c.83]


    Сильная поляризация наблюдается на металлах (платина, золото, ртуть), в растворах солей щелочных металлов, например на ртутном электроде, который опущен в 0,1 н. раствор хлористого калия, тщательно очищенный от кислорода и других окислителей. Ртуть практически не отдает своих ионов раствору, а отсутствие ионов ртути в растворе делает невозможным и выделение их на электроде. Выделение водорода из нейтрального раствора возможно лишь при значительном отрицательном потенциале электрода. Выделение калия из 0,1 н. раствора требует еще большего отрицательного потенциала (ф = —2,983 в). [c.612]

    Никелевым рудам сопутствуют не только минералы меди и железа, но и кобальта, мышьяка, селена, теллура, в малых количествах— минералы свинца, цинка, висмута, а также ценных металлов— платины, палладия, родия, золота, серебра. Поэтому при производстве никеля извлекается ряд других металлов и соединений. [c.287]

    Замена драгоценного металла (платины) на более дешевые катализаторы привела к созданию установок с движущимся катализатором, позволяющим вести процесс ароматизации непрерывно (процесс гиперформинг и др.). [c.156]

    Первая и последняя стадии реакции катализируются металлом (платина), содержащимся в катализаторе. Перегруппировка молекул происходит на кислотных центрах носителя (окись алюминия, содержащая фтор). [c.121]

    Встречаются окислительно-восстановительные электроды, значение электродного потенциала которых зависит от активности окисленной и восстановленной формы ионов в растворе. Этот электрод состоит обычно из металла (платина, палладий и т.д.), инертного в отношении окислительно-восстановительных превращений и погруженного в раствор, содержащий ионы как высшей, так и низшей форм окисления. Например, [c.253]

    Равновесие между графитом и алмазом изучалось многократно. Выяснено, что обратный переход графита в алмаз возможен при очень больших давлениях и высоких (3000°С) температурах. При комнатной температуре равновесие графит — алмаз достигается при меньших давлениях. Однако в таких условиях скорость превращения исчезающе мала и алмаз может сколь угодно долго находиться в контакте с графитом без изменений. Как и во всех аналогичных случаях, добиться перехода в алмаз при относительно умеренных условиях помогают катализаторы. Катализаторами превращения графита в алмаз являются металлы — платина, железо или хром, в жидком состоянии растворяющие графит и тем облегчающие процесс перекристаллизации углерода, [c.163]

    При нормальной температуре некоторые металлы энергично взаимодействуют со фтором. При повышенных температурах большая часть стойких в среде кислорода металлов (платина, вольфрам. титан, хром) окисляется фт6 )ом. часто с образованием летучих про дуктов реакции. Эти металлы не могут применяться в качестве конструкционных материалов. [c.852]


    Ионная окислительно-восстановитель-ная реакция может быть осуществлена в гальваническом элементе с двумя окислительно-восстановительными электродами. Напомним, это окислительно-восстановительный электрод представляет собой пластинку инертного металла (платины, золота), опущенную в раствор, содержащий ионы различной зарядности. [c.254]

    С 1975 г. часть автомобильной системы понижения токсичности отработавших газов. Окислительные нейтрализаторы удаляют из отработавших газов углеводороды и окись углерода (СО), понижающие нейтрализаторы воздействуют на содержание в газах оксидов азота (NOx). В обоих нейтрализаторах используются катализаторы, содержащие благородные металлы (платину, палладий или родий), которые могут отравляться содержащими свинец соединениями топлива или масла. [c.6]

    Хингидронным электродом называется электрод из инертного металла (платины), погруженный в исследуемый раствор, к которому [c.294]

    На неактивных металлах (платина, серебро, никель) имеет место чисто физический процесс адсорбции. Изотермы имеют типичный для адсорбции вид. При этом образуются плотно упакованные мономолекулярные слои. [c.151]

    В каталитических окислительных нейтрализаторах с катализаторами из благородных металлов — платины, платины и палладия, платины и родия — обеспечивается высокая скорость окисления при сравнительно невысоких температурах, значительно меньших, чем в термическом нейтрализаторе. Оксид углерода окисляется в СО при 250—300°С, углеводороды и продукты их окисления (в том числе и бензпирен) — при 400—450°С при этом у выпускных газов почти пропадает неприятный запах. При температуре 580°С сгорает сажа. Для увеличения поверхности контакта с газами катализатор наносится тонким слоем на поверхности носителя из кремнезема или глинозема в виде шариков-или на поверхность монолитного носителя с ячейками. В случае использования этилированного бензина активность платины и палладия быстро падает из-за отложений продуктов окисления свинца. [c.335]

    В природе, как правило, встречаются в чистом виде только благородные металлы (платина, золото, серебро и т. д.), а остальные — в виде соединений с неметаллами (минералы, руды). Причина этого — большая химическая активность (сродство) металлов по отношению к кислороду и другим неметаллическим элементам (сере, хлору, фосфору и т. д.). Свидетельством этого является то, что изобарно-изотермический потенциал у окислов, сульфидов, сульфатов, хлоридов металлов меньше, чем у элементов металла и неметалла, взятых в отдельности. Например, при образовании РегОз из отдельных элементов свободная энергия (в ккал/моль) уменьшается на 177, АЬОз — на 377, 2пО — на 76. [c.10]

    Нельзя прокаливать в платиновых тиглях тяжелые металлы и такие соединения их, которые могут восстановиться до металла. Платина легко сплавляется со многими металлами, отчего становится рыхлой, хрупкой и в результате разваливается на куски. К таким металлам относятся свинец, висмут, медь, железо и др. то же действие оказывают окислы металлов при прокаливании их с фильтром. Окись углерода, образующаяся при сгорании фильтра, может восстановить окислы металлов до свободных металлов, и тигель будет испорчен. По этой же причине в платиновых тиглях нельзя прокаливать азотнокислые соли тяжелых металлов в присутствии восстановителей. [c.138]

    Тепловые эффекты каждой из стадий определяются независимым путем, что позволяет в дальнейшем сопоставить каталитическую активность, в некотором ряду катализаторов, полученную экспериментально, с тепловыми эффектами отдельных стадий. Использование этого принципа ограничено каталитическими реакциями, характеризующимися одинаковыми механизмами и малыми изменениями энтропии активации. Условие (П.1) выполняется при предварительном подборе катализаторов для реакции окисления водорода, синтеза аммиака, разложения муравьиной кислоты и т. п. В частности, в реакции окисления водорода в соответствии с условием (II.1) из окисных катализаторов наиболее активна УгОз, из металлов — платина. [c.25]

    Ионы олова (II), отдавая электроны металлу, сообщают электроду положительный заряд. В то же время ионы железа (III) стремятся присоединить электроны, принадлежащие металлу, сообщая электроду положительный заряд. В данном случае инертный металл (платина) играет роль передатчика электронов и не претерпевает в процессе реакции никаких химических превращений. В этом и заключается отличие окислительно-восстановительных элементов от других гальванических элементов, в которых хотя и происходят реакции окисления — восстановления, электроды в процессе реакций химически изменяются (например, растворение цинка в медно-цинковом элементе Якоби — Даниеля). [c.254]

    Полярографический метод, разработанный Я- Гейровским, состоит в том, что раствор исследуемого вещества подвергают электролизу. При этом изучают зависимость силы тока, протекающего через раствор, от величины приложенного напряжения. Исследованию могут подлежать соединения, восстанавливающиеся на катоде (ионы металлов), или вещества, окисляющиеся на аноде (гидрохинон или другие органические вещества). Принципиальная схема полярографа дана на рис. 48. При исследовании соединений, восстанавливающихся на катоде, катодом обычно служит капельный ртутный электрод, представляющий собой ре- зервуар со ртутью, из которого периодически через капилляр капает ртуть. Возможно также применение микроэлектродов из других каких-нибудь металлов (платина и т. п.). На ртути может происходить выделение металла, образующего или не образующего с ней амальгаму. Восстановление металла может идти либо через стадию промежуточного состояния окисления, либо минуя ее. Полярограммы (кривые зависимости силы тока, протекающего через раствор, от величины приложенного к раствору напряжения) в каждом из перечисленных случаев имеют вид, представленный на рис. 49. [c.291]


    В катализаторы риформинга вводили различные металлы. Платина нашла широкое применение в 50-х и в начале 60-х гг. В конце 60-х гг. в промышленности начали использовать платн-норениевые катализаторы. Роль рения и форма, в которой он присутствует в катализаторе, все еще являются предметом днс- [c.148]

    Инертные, устойчивые металлы (платина, золото) применяются также для создания окислительно-восстановительных электродов. Примером такого электрода может служить платина, погруженная [c.172]

    Элементарные С1адии ряда приведенных реакций предопределяются бифункциональным характером катализаторов риформинга. С одной стороны, они содержат один металл (платину) или несколько металлов (например, платину и рений, или платину и иридий), которые катализируют реакции гидрирования и дегидрирования. С другой стороны, носителем служит промотированный галогенами оксид алюминия, обладающий кислыми свойствами и катализирующий реакции, свойственные катализаторам кислотного типа. Поэтому разные элементарные стадии реакции могут протекать на различных участках поверхности катализатора металлических или кислотных. [c.7]

    Простые вещества. В компактном состоянии рутений — серовато-белый, осмий — серебристо-белый металлы с плотнейшей гексагональной структурой, твердые, хрупкие и тугоплавкие. Химически чистый родий имеет вид светло-серого порошка. Сплавленный, он напоминает алюминий. Дисперсный порошок родия черного цвета называется родиевой чернью. При сплавлении родия с цинком и дальнейшей обработке сплава соляной кислотой получают взрывчатый родий. Причиной взрыва является каталитическое свойство родия взрывать смесь адсорбированных газов (водорода и кислорода). Коллоидальный родий, полученный диспергированием чистого металла в воде или восстановлением из растворов его солей, обладает еш,е большими каталитическими свойствами, чем родиевая чернь. Компактный иридий — серебристо-белый металл, подобно родию имеет структуру гранецентрированного куба, очс иь твердый и хрупкий. Платина и палладий — серовато-белые блестящие мягкие металлы. Платина легко прокатывается и вытягивается в проволоку, палладий поддается ковке, обладает большей вязкостью, чем платина. [c.403]

    Распространение в природе. В природе металлы встречаются и в свободном виде, и в виде соединений. В свободном виде существуют химически малоактивные, трудно окисляющиеся кислородом металлы платина, золото, серебро, ртуть, медь и т. д. Это так называемые самородные металлы, которые встречаются в виде отдельных кусков, зерен, вкраплений в горные породы. Однако известны и большие самородки самый крупный самородок меди весил 420 т, серебра—13,5 т и золота — 112 кг. Но в основном металлы встречаются в виде различных соединений (солей, горных пород и т. д.). [c.258]

    Благородные металлы- платина Р1 и платиновые металлы (Ри, [c.368]

    Как платиновые металлы — платина, рутений, родий, палладий, осмий и иридий — относятся к воде, кислороду, кислотам и щелочам Написать уравнения возможных реакций. [c.253]

    Платина — практически важнейший металл из ее семейства. Она, как и золото, принадлежит к числу наиболее благородных металлов. Платина тверже золота, но при высокой температуре легко поддается ковке, чеканке, прокату и вытягиванию в проволоку. Тончайшая платиновая нить имеет диаметр 0,05 як (500 А). Она приблизительно в 50 раз тоньше паутины. 5000 км такой проволоки весит всего 1 г. В сплошной массе платина, как уже было указано, серовато-белый блестящий металл, а в тонкоизмельченном виде — порошок черного цвета (платиновая чернь). [c.554]

    Сродство поверхности кремния к кислороду и связанная с этим склонность к формированию тонких оксидных пассивирующих покрытий позволяют при определенных условиях сместить процесс, протекающий на границе кремний—электролит в сторону образования более толстого слоя оксида. Это обычно достигается подачей на кремниевый электрод высокого положительного потенциала. Катодом при этом может служить любой инертный в данном электролите металл (платина, тантал,и т. п.). На практике невозможно получить анодные окисные пленки толще нескольких тысяч ангстрем. Это обусловлено тем, что предельный потенциал, достигаемый в процессе анодного окисления кремния, определяется электрической прочностью оксида. Кроме того, задаваемая величина тока, определяющая скорость роста оксида, также должна быть ограничена, поскольку в противном случае возможен сильный разогрев электролита, кремниевого анода, что делает процесс неуправляемым и сильно ухудшает качество образующейся пленки. [c.116]

    Реакции восстановления. Для получения золей благородных металлов (платины, золота, серебра) применяют обычно реакции восстановления. Восстановление может проводиться с применением защитных коллоидов или без них. В качестве защитных коллоидов используют ВМВ, которые адсорбируются на поверхности коллоидных частиц и образуют защитные пленки. В фармацевтической практике в присутствии защитных коллоидов получают препарат колларгол, представляющий собой коллоидный раствор серебра, защищенный солями лизальбиновой и протальбиновой кислот. [c.411]

    Опытами на машине трения, проведенными в последние годы Ф. Боуденом и его сотрудниками, показано [И, 12], что различные соединения на разных металлах дают или физически адсорбированную пленку или пленку, являющуюся результатом хемосорб-ционного процесса. Например, на инертных металлах (платина, серебро, никель, хром) и на стекле смазочные свойства жирных кислот ниже, чем парафиновых углеводородов. Наоборот, на активных поверхностях (медь, кадмий, цинк, магний, железо, алюминий) жирные кислоты дают значительно меньшее трение. Таким образом, металлы, наиболее подверженные химическому воздействию в присутствии жирных кислот, смазываются наиболее эффективно. [c.150]

    При исследовании возможности селективного извлечения благородных металлов — платины, палладия, эолота, серебра, иридия — из их смесей диалкилсульфидами п продуктами их окисления (сульфоксидами и,сульфо-нами) было установлено, что эффективность экстракции уменьшается в ряду > сульфиды > сульфоксиды > > сульфоны. Палладий хорошо экстрагируется сульфидами иэ азотно-, соляно- и сернокислых растворов иридий извлекается хуже, чем палладий и платина. Золото эффективно экстрагируют из солянокислых растворов сульфидами и сульфоксидами, а серебро из азотнокислых растворов — только сульфидами [36]. [c.178]

    Во многих случаях катализаторы наносят на какие-либо пористые и малоактивные вещества. Такие вещества называются носителяят, или трегерами, а получаемые катализаторы— наносными, или трс-герными. Осаждение на трегеры и обработка проводятся обычными методами. При этом достигается ряд преимуществ 1) экономия материала для изготовления катализатора, что особо существенно в случае дорогих металлов (платина и ее спутники), 2) большее диспергирование катализатора, 3) отсутствие усадки при восстановлении, 4) большая механическая прочность и большая сопротивляемость поверхности воздействию температуры (предохранение от спекаемости и кристаллизации). [c.82]

    При рассмотрении индикаторных электродов, применяемых в потенциометрическом методе, по различным типам химической реакции можно заключить, что только в окислительно-восстановительных и кислотно-основных реакциях они являются универсальными. Независимо от природы окислителя или восстановителя в качестве индикаторного электрода в редоксметрии или редоксметрическом титровании может быть использован один и тот же благородный металл (платина или золото), являющийся переносчиком электронов. То же можно сказать об индикаторных электродах в методе рН-метрии или кислотно-основного титрования независимо от природы титруемых кислот или оснований и титрантов химическая реакция связана с изменением концентрации ионов водорода (pH) в растворе поэтому доста- [c.30]

    В свою очередь, тремя скачками потенциала, зависящими от природы металла, электролита и электрода сравнения (скачки потенциала на границе раствор — металл giM, платина — раствор gpti, металл — платина gAjpt), определяется и величина электродного потенциала  [c.65]

    Электрохимическое осаждение некоторых металлов платиновой группы нашло применение в гальванотехнике. Практически используется покрытие металлов платиной, палладием и родием. Платину осаждают в виде блестяшего слоя толш,иной от [c.260]

    Палладий растворим в конц. НМОз. Остальные платиновые металлы, за исключением рутения, родия и иридия, могут быть растворены в царской водке . Окисление Ки, КЬ и 1г удается провести при повышенных температурах, например, при их нагревании с кислородсодержащей соляной кислотой. Важное значение имеет способность некоторых платиновых металлов, (платины и, особенно, палладия, см. опыт 2) растворять зкачи.-тельные количества водорода. [c.643]

    Они создаются погружением инертного металла (платина, золото, иридий и др.) в раствор, в котором протекает окислительно-восста-коБНтельная реакция. Инертный металл служит источником или приемником электронов. Схематически электрод записывается так Ох, Неё, растворитель (Р1). [c.133]

    Больщим преимуществом неконтактных методов является устранение из кондуктометрической. ячейки драгоценных металлов (платины), так как при отсутствии прямого онта-кта исследуемой системы с электродами последние можно изготовлять из любого металла. [c.94]

    Если взаимодействие коллоидных частиц со средой незначительно, то золи называют лиофобными (гидрофобными), если оно выражено сильно, то золи называют лиофильными (гидрофильными). Частицы в лиофильных золях окружены сольватной (гидратной) оболочкой, делающей их более агрегативно устойчивыми по сравнению с лиофобными золями. Типичные гидрофобные золи — гидрозоли металлов (платины, золота, серебра и др.), неметаллов (серы, графита и др.), солей, не образующих истинных растворов в воде (Agi, As Sg и др.). Гидрозоли кремниевой и ванадиевой кислот, гидроксидов алюминия и железа (III) несколько приближаются к гидрофильным системам. Типичные лиофильные системы — водные растворы желатина и вообще разных белковых веществ, целлюлозы и др. Их раньше причисляли к лиофильным коллоидам. Но в настоящее время доказано, что растворы подобного рода высокомолекулярных веществ, а также синтетических высокомолекулярных веществ являются однофазными системами (Каргин, Слонимский и др.). В отличие от типичных коллоидных растворов указанные растворы только в некоторых отношениях сходны с типичными коллоидами медленная диффузия, неспособность проникать через животные и растительные пленки. Это объясняется тем, что в растворах высокомолекулярных веществ молекулы велики (см. гл. XIII) и соизмеримы с размерами коллоидных частиц. Но все же они являются молекулярно-дисперсными системами и по своей агрегативной устойчивости близки к истинным растворам низкомолекулярных веществ. По этой причине растворы высокомолекулярных веществ сейчас не причисляют к типичным коллоидным микрогетеро-генным системам. [c.176]


Смотреть страницы где упоминается термин Металлы платино: [c.316]    [c.67]    [c.288]    [c.265]    [c.214]    [c.337]    [c.129]    [c.157]    [c.314]   
Химический энциклопедический словарь (1983) -- [ c.448 ]




ПОИСК





Смотрите так же термины и статьи:

Арильные соединения переходных металлов платины

Аффинированные металлы, анализ платина

Аффинированные металлы, спектральный анализ платины

Балашова, Н. Т. Горохова, М. И. Кулезнева. Кинетика адсорбции и обмена ионов на металлах группы платины

Благородные металлы Золото, осмий, рутений, платина, палладий, родий и иридий Платиновые металлы

Восстановление висмута на катоде из платины и других металлов (электроаналитические методы)

Двойной электрический слой и адсорбционные явления на металлах группы платины

Изделия из платины и других металлов

Испытание на чистоту металлов платины

Катализ выделения водорода металлами группы платины

Катализ металлами группы платины

Комплексы, образованные солями меди, серебра, золота, платины, палладия и других переходных металлов

Металлы платина

Металлы платина

Металлы подгруппы платины

Немилое. Н. С. Курнаков и Институт по изучению платины и других благородных металлов

Окисление благородных металлов платины

Основные закономерности адсорбции органических веществ на электродах из металлов группы платины при низких анодных потенциалах

Петрий, Б. И. Подловченко Исследование адсорбции и электроокисления метанола и метана на металлах группы платины

Петрий. Исследование структуры двойного электрического слоя на металлах группы платины

Платина в виде металла

Платина восстановление до металла

Платина и металлы ее группы

Платина из стоков процесса рафинирования металлов платиновой группы

Платина колебания связей с металлами

Платина см Платиновые металлы

Платина также Металлы платиновые

Платиновые металлы, исследование по изучению платины

Получение платины и платиновых металлов в чистом виде

Разделение металлов в присутствии золота, молибдена, платины, селена я тел лура

Разделение металлов в присутствии золота, молибдена, платины, селена я тел лура меди группы мышьяка

Растворимые лазурь II металлы золото II платина

Свойства платины и металлов платиновой группы

Связь металл — углерод в случае окиси углерода, хемосорбированной на платине

Сернокалиевая соль, действие лото платину и металлы

Сернокалиевая соль, действие на золото платину и металлы

Сернокалиевая соль, действие на золото платину и металлы платиновой группы

Сернокалиевая соль, действие на золото платину и металлы сплавы меди с оловом цин

Системы, образованные кремнием с металлами подгруппы платины

Соединения платины и палладия брутто-состава, отвечающего третьей степени окисления металла

Таблицы анализов металлов на чистоту платины, иридия, родия, алюминия, серебра, цинка и свинца

Термоэлектродвижущая сила металлов в паре с платиной

Ход разделения металлов в присутствии золота, платины, молибдена, селена и теллура

Цианистый натрий, действие на золото платину и металлы

Цианистый натрий, действие на золото платину и металлы платиновой группы серебро сплавы меди

Ш т е п а Т. Д. Исследование взаимодействия титана с металлами группы платины

Электролитическое осаждение металлов группы платины

Элементы, сульфиды которых нерастворимы в кислотах, но растворимы в растворах сульфидов щелочных металлов Мышьяк, сурьма, олово, германий, молибден, селен, теллур (и полностью или частично золото, платина и иридий) Мышьяк

олово платину и металлы платиновой группы

платину и металлы платиновой группы

платину и металлы платиновой группы на серебро



© 2025 chem21.info Реклама на сайте