Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Притяжение частиц

    Межмолекулярное взаимодействие играет определенную роль и в явлении смачивания. Прежде чем обсудить этот вопрос, остановимся на понятиях когезии и адгезии. Когезия характеризует взаимное притяжение частиц тела, обусловленное силами межмолекулярного взаимодействия, действующими внутри него. Наиболее сильна когезия в твердых телах и жидкостях и очень незначительна в газах (см. разд. 1.10). Она определяет прочность тел и другие подобные физико-механические свойства. [c.31]


    Как уже было упомянуто, движущая сила химической реакции определяется энергией Гиббса AG. В выражении (3) АН представляет энтальпийный, а TAS — энтропийный фактор. Первый из них отражает тенденцию системы к образованию связей в результате взаимного притяжения частиц — молекул или атомов, что приводит к их усложнению, а второй — тенденцию к усилению процессов диссоциации сложных частиц на более простые и их менее упорядоченному состоянию. Оба фактора обычно действуют в противоположных направлениях и общее направление реакции определяется влиянием преобладающего фактора. [c.80]

    Ориентация молекул в ГС жидкостей, повышение вязкости, упругости, появление сопротивления сдвигу могут значительно препятствовать сближению частиц. Перекрытие ГС при сближении частиц приводит к появлению структурной составляющей расклинивающего давления, ответственной за устойчивость ряда гидрофильных коллоидов и а-пленок воды на гидрофильных подложках. В случае гидрофобных поверхностен структурные силы могут приводить к дополнительному притяжению частиц ( гидрофобное взаимодействие ). [c.171]

    Таким образом, в отличие от кристаллических веществ, у которых способность возвращаться в исходное состояние после прекращения действия внешней силы обусловливается взаимным притяжением частиц, высокоэластические свойства обусловлены тепловым движением звеньев цепей, действующим в направлении увеличения числа различных конформаций макромолекулы ( 22), что сопровождается возрастанием термодинамической вероятности [c.575]

    Соотношение между энергиями отталкивания и притяжения частиц в области малых потенциалов (VI.109) имеет вид [c.334]

    Изложенные закономерности как в отношении состава, так и в отношении энергии образования атомных ядер объясняются особенностями взаимодействия нуклонов внутри ядра. В настоящее время принято считать, что во внутриядерных силах важнейшую роль играет интенсивное взаимодействие между протонами и нейтронами. Силы, действующие в этом случае, проявляются при расстояниях 10 2 см и очень быстро убывают с увеличением расстояния (обратно пропорционально не второй, а значительно более высокой степени его). Наряду с этим взаимодействием сказывается и взаимное отталкивание протонов внутри ядра. Это отталкивание выражается законом Кулона и убывает с увеличением расстояния значительно медленнее. В результате этого у более тяжелых ядер (вследствие большего размера их) силы взаимного притяжения частиц, из которых они состоят, ослабляются, а взаимное отталкивание протонов проявляется относительно сильнее Энергия образования таких ядер из нейтронов и протонов возрастает уже не пропорционально массе, а в меньшей степени, и потому тяжелые ядра менее устойчивы. В связи с этим для тяжелых ядер имеет большое значение наличие указанного выше избытка нейтронов, так как тем самым увеличивается среднее расстояние между протонами и ослабляется их взаимное отталкивание. [c.54]


    Наиболее высокими температурами плавления обладают некоторые группы кристаллов с атомной решеткой. Сюда относятся многие карбиды, силициды, нитриды и бориды метал юв. Плавление кристаллов происходит при той температуре, при которой тепловое движение частиц, усиливающееся при нагревании, становится способным в той или другой степени преодолевать взаимное притяжение частиц. Здесь речь идет о колебательном движении частиц, образующих кристаллическую решетку, и о взаимном притяжении между этими частицами. [c.151]

    В кристаллах силы взаимного притяжения частиц в различных направлениях неодинаковы. Поэтому и поверхностное натяжение разных граней кристалла моз/сет быть неодинаковым. Вследствие этого наименьшее суммарное значение изобарного потенциала всей поверхности кристалла 2(ст5) достигается при определенном соотношении в размерах его граней (в отличие от жидкостей, где оно достигается при шарообразной форме тела). С этим связано, что кристаллам, в отличие 01 жидкостей, свойственна определенная геометрическая форма. Та форма кристалла, которая отвечает наименьшему значению обладает наибольшей устойчивостью (принцип Гиббса Кюри). [c.358]

    При упругой деформации работа затрачивается на преодоление сил взаимного притяжения частиц и искажение валентных углов. [c.572]

    Выведены уравнения [68] для расчета энергии ван-дер-вааль-сового притяжения частиц, содержащих адсорбционно-сольватные оболочки, при применении детергентно-диспергирующих присадок сукцинимидной (например, С-5А) и алкилсалицилатной. [c.98]

    Согласно (VП.58) х = п,и . Энергия притяжения частиц [c.229]

    Коагуляционные структуры возникают за счет ван-дер-ваальсовых сил притяжения частиц и образуются в результате коагуляции их на расстояниях, отвечающих вторичному минимуму на потенциальной кривой, когда между частицами дисперсной фазы имеются прослойки среды. Наличие таких прослоек в местах контакта между частицами обусловливает относительно небольшую прочность и ярко выраженные пластические свойства структур. Для коагуляционных структур характерны такие специфические свойства, как тиксотропия и реопексия. Тиксотропия — способность структурированной системы восстанавливать во времени свои прочностные свойства после ее механического разрушения. Реопексия — явление, обратное тиксотропии — возникновение и упрочнение структуры в результате механического воздействия. [c.187]

    Эффективность отрицательного расклинивающего давления как фактора, способствующего сближению частиц, зависит от толщины поверхностного слоя 6, в котором совершается переход от объемных свойств к поверхностным. Если 1 мало и велико, то потенциальная энергия отрицательного расклинивающего давления будет представлена потенциальной ямой с практически вертикальными стенками. В этом случае свободная поверхностная энергия способствует коагуляции только как термодинамический фактор, необратимо смещающий равновесие в сторону коагуляции. Таким образом, учитывалось притяжение частиц, например, в теории быстрой коагуляции Смолуховского. [c.9]

    Экспериментально показано [21], что твердые дисперсные частицы из масла осаждаются на электризованную поверхность, удаление их от заряженного тела почти не имеет места. Отрыв частиц, по-видимому, может происходить вследствие перераспределения зарядов при контакте, когда 1 г, но в этом случае поляризационное взаимодействие, силы притяжения зарядов с их зеркальными отображениями имеют максимальное значение. Кроме того, отрыву частицы масла препятствуют межмолеку-лярные силы сцепления и центробежные силы инерции. Так как притяжение частицы стенкой ротора возрастает по мере приближения этой частицы к заряженной поверхности, то наиболее удобным вариантом устройства электроцентробежной очистки, по-видимому, следует считать центрифугу, в которой течет непрерывно сравнительно тонкий слой очищаемой неполярной жидкости. [c.51]

    Адгезия характеризует взаимное притяжение частиц различных тел в области их соприкосновения (на поверхности раздела), обусловленное силами межмолекулярного взаимодействия между этими телами. Адгезией объясняется слипание различных тел, а также и смачивание. [c.31]

    Хотя на капельках жидкости во время распыления возникает некоторый электростатический заряд, он, как было показано, является слишком слабым, чтобы играть важную роль в улавливании частиц [256] за исключением тех случаев, когда капелькам жидкости специально сообщается заряд из внешнего источника [463]. Подобным же образом тепловое осаждение вряд ли может быть главной силой притяжения частиц, поскольку капельки жидкости летучи, а температурный перепад, необходимый для эффективного теплового осаждения, настолько велик, что эти капельки должны были бы испариться. В системах, где используются оросительные башни и скрубберы для обработки горячих дымовых газов, они выполняют комплексную функцию охлаждения и увлажнения газов, а также улавливания крупных частиц, прежде чем газы поступят в соответствующую установку для удаления мелких частиц. [c.393]


    В растворе углеводородов соли тяжелых металлов находятся в недиссоциированной форме. В отсутствие полярных молекул молекулы солей ассоциируются в мицеллы [29]. Средний размер мицелл тем больше, чем выше концентрация соли в растворе. Например, степень ассоциации стеариновокислой меди в толуоле при комнатной температуре 6,4 при ее концентрации ОД г/кг раствора и 7,1 при концентрации 0,26 г/кг. Мицеллы образуются из-за диполь-дипольного притяжения частиц, и чем выше дипольный момент соли, тем выше степень ассоциации [29]. В результате образования полярных продуктов в окисляющемся углеводороде степень ассоциации молекул соли снижается, поскольку появляются комплексы типа соль — продукт. Вместе с тем эти продукты конкурируют с ROOH как лигандом в координационной сфере металла, поэтому при накоплении продуктов окисления скорость каталитического распада ROOH на радикалы снижается. [c.193]

    Сила притяжения частицы загрязнения к электродам в электростатическом поле [c.61]

    Слабое взаимное притяжение частиц в неполярных кристаллах обусловливает их малую твердость, а также низкие температуры плавления и кипения. Подобные вещества большей частью легко летучи. Так, твердая двуокись углерода СО.2 при комнатной те.мпе- [c.116]

    Природа сил притяжения частиц во всех состояниях электрическая, т. е. прямо или косвенно связана с участием электронов. Переход из одного состояния в другое не сопровождается изменением стехиометрического состава вещества, но обязательно связан с большим или меньшим изменением его структуры. В этом смысле переход из одного состояния в другое относится к явлениям химическим. Конечно, здесь, как и всегда, нужно помнить об относительности и условности разграничения, в том числе и разграничения понятий физическое и химическое явление. [c.132]

    Действие электролитов на многокомпонентные (по дисперсной фазе) системы более многообразно, чем на однокомпонентные повышение концентрации индифферентного электролита может как ускорять, так и замедлять коагуляцию. Последнее наблюдается, например, в тех случаях, когда притяжение частиц обусловлено электростатическим взаимодействием, а отталкивание—молекулярным. [c.153]

    Во внутреннем строении кристаллов выполняется принцип плотнейшей упаковки частиц, из которых состоит данный кристалл. Под действием сил взаимного притяжения частицы стремятся разместиться как можно ближе друг к другу. Поэтому наиболее энергетически выгодно такое взаимное расположение частиц в [c.30]

    Рассмотрим, как происходит взаимодействие коллоидных частиц в зависимости от расстояния между ними. Энергия взаимодействия W двух коллоидных частии в зависимости от расстояния между их поверхностями изменяется по кривой, изображенной на рис. 118, где положительные значения W соответствуют отталкиванию, а отрицательные — притяжению частиц. Эти кривые носят название по-тенциальных кривых. [c.379]

    Коагуляционные пространственные структуры образуются из свободнодисперсных систем, когда дисперсионное притяжение между частицами преобладает над электростатическим отталкиванием. В этом случае энергия результирующего взаимного притяжения частиц сравни.ма с энергией их теплового броуновского движения. [c.312]

    Физической основой падения активности по сравнению с концентрацией является взаимное притяжение частиц. Взаимное отталкивание частиц в растворе должно, наоборот, вызывать увеличение активности. В разбавленных растворах электролитов электростатическое притяжение ионов оказывается преобладающим v Учет собственного размера ионов эквивалентен учету сил отталкивания, не позволяющих ионам сблизиться на расстояние, меньшее а. Второе приближение теории, учитывающее этот фактор, приводит к менее резкому уменьшению коэффициента активности рис. 1П.4) и позволяет описать опытные данные в более широком интервале концентраций. Однако в концентрированных растворах большая часть молекул воды связана ионами, так что добавление новых порций электролита должно сопровождаться разрушением сольватных оболочек и преодолением сил ион-дипольного взаимодействия. Это эквивалентно преобладанию эффекта взаимного отталкивания ионов над их взаимным притяжением при этом у >1. Таким образом, переход к концентрированным растворам сопровождается резким возрастанием коэффициентов активности. Чтобы описать возрастание коэффициентов активности при больших концентрациях раствора, в уравнение (1П.55) было формально введено эмпирическое слагаемое J  [c.48]

    В зависимости от внешних условий вещества могут находиться в разных агрегатных состояниях — в газовом, идком, твердом. Прирс да сил притяжения частиц, образующих вещество, во всех состояниях электрическая, т. е. прямо или косвенно связана с участием эл1 .ктронов. Переход из одного агрегатного состояния в другое не сопровождается изменением стехиометрического состава вещества, но обязательно связан с большим или меньшим изменением его структуры. В этом смысле переход из одного состояния в другое относится к явлениям химическим. Конечно, здесь, как и всегда, нужно помнить об относительности и условности разграничения, в том числе и разграничения понятий физическое и химическое явление. [c.99]

    Чем больше плотность газа, т. е. чем меньше расстояние между его частицами, тем больше такой газ отклоняется от идеального состояния. Действительно, с увеличением плотности газа начинают увеличиваться не только силы взаимодействия между его частицами, но также и относительный объем их по оравненпю с общим объемом газа. Это обстоятельство вызывает необходимость внести соответствующие поправки в уравнение (24) для идеальных газов внешнее измеряемое давление Р газа должно быть увеличено за счег сил взаимного притяжения его частиц, а объем V — уменьшен на величину объема, занимаемого массой частиц. Силы взаимного притяжения частиц, называемые ван-дер-ваальсовыми силами, могут рассматриваться как внутреннее давление газа, и величина их, в первом приближении, обратно пропорциональна квадрату объема, занимаемого газом. [c.54]

    Полученные данные подтверждают возможность распространения физической теории на первую стадию коагуляции латексов электролитами. Константа сил ван-дер-ваальсова притяжения частиц в этой коллоидной системе, как следует из полученных [28— 30] данных, зависит ог степени насыщенности адсорбционных оболочек до состояния их, близкого к насыщению [41]. [c.257]

    Рассмотрим зависимость от расстояния энергии притяжения частиц — молекуляриой составляющей расклинивающего давлс ния. Из сил Ван-дер-Ваальса наиболее универсальными и существенными силами притяжения являются лондоновские силы дисперсионного взаимодействия. Как уже отмечалось, дисперсионное взаимодействие слабо экранируется, и поэтому взаимодействие между частицами легко определить суммированием взаимодействий между молекулами или атомами в обеих частицах, например, с помощью интегрирования. Такой приближенный расчет в предположении аддитивности межмолекулярных (межатомных) взаимодействий был проведен де Буром и Гамакером. Для вывода уравнения энергии молекулярного притяжения между частицами воспользуемся уравнением энергии притяжения одной молекулы (атома) к поверхности адсорбента (в данном случае частицы), приведенном в разд. III. А, посвященном адсорбции (111.6)  [c.328]

    В настоящее время созданы довольно эффективные конструкции злектроочистителей. Наибольшее распространение получили электростатические очистители с однородным и неоднородным электрическим полем (табл. 43). Очистка масел в электростатическом поле основана на действии оил электрического притяжения. Частицы загрязнений при движении в масле вследствие электризации трением получают электрический заряд попадая в электрическое поле, они притягиваются к электродам, концентрируются на них, укрупняются а результате агрегирования и могут быть удалены из масла. [c.167]

    Лйметйлметакрилат й т.п.). Злектрбстатйческбё полб создается зарядами, возникающими в результате три-боэлектризации между наружной стенкой ротора и специальными накладками (из войлока, стеклянной ткани и др.). Электростатические силы, действующие на частицы загрязнений однов ременно с центробежными, способствуют притяжению частиц к стенке ротора и препятствуют их отрыву потоком масла. Приведенные в работе [58] данные, характеризующие степень очистки масла рассмотренным устройством, показывают его эффективность по сравнению с обычной центрифугой аналогичной конструкции (табл. 44). [c.181]

    Под коллоидным измельчением подразумевается такое, при котором получается продукт, размер частиц которого близок к коллоидным (в поперечнике), т. е. порядка единиц или даже долей микрометра. В принципе в любом из рассмотренных измельчителей, предна-значениых для тонкого измельчения, при соблюдении определенных условий можно получить частицы такой дисперсности, однако технологически и экономически оказалось целесообразнее получать подобные продукты в специальных, так называемых коллоидных, измельчителях. Объясняется это тем, что частицы материала, размер которых близок к коллоидным, притягиваясь друг к другу, слипаются или дан е спрессовываются под действием внешних сил. При некоторой круниости материала устанавливается своеобразное равновесие в его гранулометрическом составе. Сколько частиц получается при разрушении, столько же разрушенных ранее частиц снова соединяется. Чтобы избежать укрупнения частиц, коллоидное измельчение ведется в присутствии диспергирующей среды. После разрушения осколки частиц материала необходимо рассредоточить, удалить друг от друга на такое расстояние, при котором силы взаимного притяжения частиц будут меньше так называемых расклинивающих сил дисперсной среды. В качестве диспергирующей среды обычно применяют жидкость и реже газ. [c.238]

    Так как поверхностная энергия равна произведению поверхио стного натяжения на площадь поверхности, то она может уменьшаться как за счет сокращения поверхности, так и за счет уменьшения поверхностного натяжения. Поверхность может самопронз-вольно уменыиаться при изменении формы тела, что характерно для жидкостей. Б этом отношении наглядным является опыт Плато, демонстрирующий стремление жидкости в условиях невесомости принимать сферическую форму — наименьшую поверхность при данном объеме. Часто опыт Плато проводят с анилином, который по каплям вносят в теплую воду. Приблизительно одинаковая плотность этих жидкостей обеспечивает каплям анилина условие невесомости . В этих условиях они испытывают только действие поверхностной энергии и поэтому принимают правильную сферическую форму. Жидкости точно так же будут вести себя и в космосе. Сферическая форма планет — результат действия поверхностной энергии, обусловленной взаимным притяжением частиц, составляющих эти планеты. [c.31]

    При взаимодействии макроскопических тел в конденсированной среде аддитивное приближение оказывается менее удовлетворительным, чем при взаимодействии в вакууме. Флуктуация заряда в объеме одного из тел индуцирует дипольные моменты не только у молекул другого тела, но и у молекул находящейся в зазоре жидкости. В свою очередь,индуцированные диполи второго тела взаимодействуют не только с первичными диполями первого тела, но и с индуцированными диполями жидкой среды, находящейся между ними [186]. В результате возникает необходимость учета влияния среды на межчастичное взаимодействие в дисперсных системах, в частности, на распространение ловдоновского поля между элементами макроскопических тел и учет конечности величины притяжения частиц средой [187]. Наличие жидкой среды уменьшает силы взаимодействия между частицами, которые в этом случае даже при сравнительно больших R не всегда являются только дисперсионными[188]. Так, резонансная энергия должна вносить существенный вклад в суммарную энергию межчастичного взаимодействия в жидкой среде, особенно если она представлена аромати- [c.99]

    Наиболее распространенный вид структурообразования — возникновение рыхлой пространственной сетки за счет преобладания притяжения частиц на расстоянии /г=Ло. Необходимым условием образования такой структуры, называемой коагуляционной, является заметная величина потенциальной ямы (Дб тш АТ ) и концентрация частиц (9 0,01—0,1), достаточная для образования сплошной пространственной сетки (рис. 94,а). Коагуляционная структура способна разрушаться при механических воздействиях (например, при течении) до отдельных частиц (рис. 94,6). Обратимое изотермическое разрушение структуры при механических воздействиях и ее последующее восстановление называется тиксотропивй. Для тиксотропного восстановления требуется некоторое время. Это время особенно велико у гелей (структурированных коллоидных растворов). [c.157]

    В формуле (VI 1.59) и других величина имеет смысл максимальной величины силы Pv. действующей вдоль траектории 5 смещения частицы и необходимой для преодоления силы сцепления двух частиц (рис. VII.20). При сдвиговой деформации 3 в sin0 раз меньше, чем сила притяжения частиц, действуьэщая вдоль линии центров частиц. Если исходить из закона молекулярного притяжения сферических частиц U = — Klh, где —константа и /1—расстояние между поверхностями сфер, то получим [c.212]

    На потенциальной кривой I (см. рис. 34) на расстоянии Г частиц друг от друга существует минимум М. Для гидрофобных золей глубина его незначительна, но для сравнительно крупных асимметричных частиц, имеющих форму палочек или пластин, энергия взаимодействия в точке М превышает энергию теплового дви-жеиия и происходит взаимное притяжение частиц с большого расстояния (порядка нескольких толщин двой-А Б .ного электрического слоя). Это явление [c.90]

    Взаимная коагуляция коллоидов. Изучение коагуляции при смешении золей с разноименно заряженными частицами начали Пнктон и Линдер в 1897 г. Это явление получило название взаимной коагуляции. Установлено, что золи оказывают друг на друга максимальное влияние, если суммарный заряд (с учетом знаков) их частиц равен нулю. Электростатическое притяжение частиц — не единственная причина взаимной коагуляции. Вероятно, между частицами возникает адсорбционное и химическое взаимодействие, так как наблюдается коагуляция одноименно заряженных золей, различающихся природой дисперсной фазы и составом ионной атмосферы. [c.117]

    Реальные газы. Даже при обычных температурах и атмосферном давлении отклонения от уравнения (III.И) для некоторых газов достигают 2—4%. Расчеты показывают, что ошибка расчета в 1% для двухатомных газов отвечает К sg 5 л/моль, а для многоатомных (например, СОа, H3N, С4Н10) этот предел возрастает до 20 л/моль. При высоких давлениях (малых объемах) погрешность при использовании уравнения (111.11) может достигнуть огромной величины (несколько сот процентов). Эти отклонения, возрастающие с увеличением давления и уменьшением температуры, обусловлены тем, что в условиях умеренных и высоких давлений и сравнительно низких температур нельзя пренебрегать ни собственным объемом частиц (ведь свободное пространство, в котором могут перемещаться частицы газа, меньше общего объема сосуда), ни взаимодействием между ними (частицы газа притягиваются друг к другу). Поэтому в уравнение (111.13) следует ввести две поправки одна из них должна учитывать объем частиц (и их взаимное отталкивание при малых расстояниях), а другая — взаимное притяжение частиц внутреннее давление Рв ), приводящее к тому, что давление реальных газов ниже, чем давление идеального газа. Обе поправки по их смыслу должны зависеть от природы данного газа. Так получают вместо уравнения (III. 11) уравнение состояния реальных газов [c.220]

    ТПри упругой деформации работа затрачивается на преодоление/ сил взаимного притяжения частиц и искажение валентных углов. Это приводит к возникновению в теле внутренних напряжений, под действием которых частицы стремятся восстановить прежнее состояние и выделить избыточную энергию, большей частью в форме теплоты или работы. Если при этом происходят только процессы, которые легко обращаются после прекращения действия внешней силы (например искажение валентных углов), то деформация не достигает предела упругости если же деформация связана с менее обратимыми процессами j (например, с разрывом химических связей), то она переходит в область1 пластической дес рмации и после прекращения действия внешней силы полностью самопроизвольно не устраняется, ч ..................................... [c.215]


Смотреть страницы где упоминается термин Притяжение частиц: [c.336]    [c.152]    [c.575]    [c.19]    [c.375]    [c.162]    [c.114]    [c.207]    [c.285]    [c.311]    [c.218]   
Очерк общей истории химии (1969) -- [ c.219 , c.264 , c.288 ]




ПОИСК







© 2025 chem21.info Реклама на сайте