Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Энергия адсорбции поверхностная

    Перенапряжение перехода возникает тогда, когда наиболее медленной стадией электродного процесса является собственно электрохимическая реакция (разряд, ионизация). Основы теории перенапряжения перехода в 1930—1940 гг. были предложены М. Фольмером, Т. Эрдей-Грузом, А. Н. Фрумкиным и другими в применении к процессу выделения водорода в более поздних работах была дана общая теория этого вида перенапряжения. Теория Фольмера и Эрдей-Гру-за разработана для концентрированных растворов электролитов при отсутствии специфической адсорбции поверхностно-активных веществ на электродах. Она основана на общих положениях химической кинетики, устанавливающих зависимость между скоростью реакции и энергией активации. Однако для электрохимических процессов следует учитывать зависимость энергии активации от потенциала электрода. Рассмотрим теорию перенапряжения перехода в применении к катодной реакции Ох + ге" Red. Скорость этой реакции равна разности скоростей прямой реакции восстановления и обратной — окисления. Скорость каждой из них описывает уравнение [c.505]


    Как уже указывалось, в работе [10] излагаются результаты по расчету активности окисного никелевого катализатора в реакции разложения перекиси водорода. Авторы применили метод титрования окиси никеля водными растворами гидразингидрата или иодида калия при заданных pH, которые имеют разный окислительно-восстановительный потенциал, для анализа функции распределения активных центров катализатора по свободной энергии адсорбции поверхностно-связанного кислорода. Была установлена близкая к линейной зависимость активности катализатора от числа центров со свободной энергией сорбции кислорода в интервале от —46,5 до —53,5 кДж/моль. [c.96]

    Очевидно, что на жидкой поверхности раствора все места равноценны для адсорбции, так что Ns соответствует заполнению всей поверхности адсорбированными молекулами. В случае твердых поверхностей среднее расстояние между молекулами, адсорбированными на активных центрах (особенно если последние малочисленны), велико даже при Ма = Поэтому здесь можно пренебречь взаимодействием между адсорбированными молекулами и принять, как это было сделано выше, что энергия адсорбции не зависит от степени заполнения 0. Однако при адсорбции на жидкой поверхности с повышением поверхностной концентрации среднее расстояние между адсорбированными молекулами беспрепятственно уменьшается до тех пор, пока не будет достигнута плотная упаковка. Отсюда следует, что, применяя изотерму Ленгмюра к этому случаю, мы, с одной стороны, пренебрегаем силами взаимодействия между адсорбированными молекулами и в этом отношении рассматриваем адсорбционный слой как идеальный, а с другой — учитываем собственный объем молекул, так как полагаем, что величина адсорбции Ма = Ms соответствует заполнению всей поверхности. Такое компромиссное решение вопроса может дать правильный результат, если поправка на собственный объем молекул, учитывающая силы отталкивания, значительно превосходит поправку на силы притяжения. Вообще говоря, это маловероятно, поскольку силы отталкивания между молекулами спадают с расстоянием быстрее, чем силы притяжения. Поэтому пока адсорбция мала, приближение, основанное на пренебрежении силами притяжения, допустимо, но с ростом концентрации оно приводит к отклонениям от эксперимента, которые можно устранить, введя соответствующим образом подобранную зависимость ц> от 9, учитывающую силы притяжения. Далее мы увидим, что иногда таким путем можно достигнуть удовлетворительных результатов. Есть и еще одно осложняющее обстоятельство, которое почти никогда не принимается во внимание. Оно заключается в том, что Ms само может зависеть от 9. [c.108]


    Если энергия адсорбции сравнима по величине с энергией связей или молярной поверхностной энергией твердого тела (или превосходит их), это может вызвать существенное изменение структуры его поверхности. Отсюда следует, что поверхность металла в процессе хемосорбции подвергается структурной перестройке. [c.183]

    Вторые члены правой части уравнения (2.64) и (2.65) тождественны, величина А пропорциональна разности энтальпии адсорбции и энергии активации поверхностной диффузии и в первом приближении хорошо аппроксимируется линейной функцией комплекса критических параметров чистого вещества  [c.61]

    Если поверхностно-активное вещество не проявляет заметно ионогенных свойств, то оно будет лучше адсорбироваться на слабо заряженных поверхностях, т. е. вблизи точки нулевого заряда, где больше поверхностное натяжение. Это связано с тем, что именно при этих условиях в результате адсорбции произойдет наибольшее уменьшение энергии Гиббса поверхностного слоя. Экспериментальные данные полностью подтверждают этот вывод (рис. И. 11). Максимум электрокапиллярной кривой в присутствии ПАВ снижается, становится менее четким, но не сдвигается ио оси потенциала. Такая закономерность позволяет использовать метод, основанный на адсорбции неионогенных ПАВ, для нахождения точки нулевого заряда. Ионогенные вещества, ионы которых значительно отличаются по поверхностной активности, могут сдвигать точку нулевого заряда в ту или иную сторону по оси потенциала. Например, анионы 0Н , ЗО , СО3 , НРО не являются поверхностно-активными на границе вода — ртуть (они сильно гидратированы и к ртути не имеют специфического сродства) и поэтому [c.52]

    Соотношение (1П.72) говорит об эквивалентности превращения поверхностной энергии в химическую (энергию адсорбции). [c.139]

    На первый взгляд может показаться, что закономерности заполнения микропор будут следовать теории капиллярной конденсации. Однако размеры микропор таковы, что в них происходит перекрытие полей поверхностных сил противоположных стенок пор, что значительно повышает энергию адсорбции и искажает профиль мениска конденсата в порах, соответствующий уравнению Кельвина. Этот эффект четко наблюдается при исследовании адсорбции вещества адсорбентами одной природы, по имеющих разные размеры пор. Если размеры пор п молекул адсорбата сопоставимы, наблюдается резкое увеличение адсорбции в области малых равновесных давлепий. Гистерезис в микропорах обычно не наблюдается. [c.140]

    При минимальной энергии взаимодействия наблюдается физическая адсорбция, обусловленная диполь-дипольными взаимодействиями Ван-дер-Ваальса. При обменном взаимодействии электронов твердого тела с частицами сорбата образуются химические связи (хемосорбция). При хемосорбции теплота сорбции примерно на порядок больше, чем при физической адсорбции. Если энергия адсорбции сравнима по величине с энергией связей или молекулярной поверхностной энергией твердого тела, то поверхность металла при хемосорбции подвергается структурной перестройке (модификации). [c.46]

    Процесс самопроизвольного концентрирования вещества на поверхности какого-либо тела называется адсорбцией (поглощением). Так как любая поверхность раздела фаз обладает поверхностной энергией, адсорбция возможна на любой поверхности раздела фаз между жидкостью и газом, между твердым телом и газом, между двумя несмешивающимися жидкостями, между твердым телом и жидкостью. [c.121]

    По П. А. Ребиндеру, стабилизующее действие гелеобразных адсорбционных слоев стабилизатора обусловливается тем, что высоковязкая прослойка между частицами не успевает выдавиться за время столкновения частиц дисперсной фазы в результате броуновского движения или в потоке. В известных условиях стабилизация дисперсных систем адсорбционно-сольватными слоями, обладающими упругостью и механической прочностью, может безгранично повышать устойчивость системы вплоть до полной фиксации ее частиц. Примером этому может служить отвердевание жидких прослоек между воздушными пузырьками пены в результате геле-образования или полимеризационных процессов. П. А. Ребиндер отмечает, что образования структурно-механического барьера достаточно для стабилизации только тогда, когда на наружной границе адсорбционного слоя поверхностная энергия мала и не резко возрастает на подступах к частице. При наличии хотя и структурированной, но не лиофильной, а лиофобной оболочки все же может происходить слипание частиц путем сцепления оболочек наружными поверхностями. Такого рода явления можно наблюдать при флотации в результате адсорбции поверхностно-активных веществ полярными группами на поверхности гидрофильных твердых частиц. Направленные в водную среду углеводородные цепи связываются друг с другом своеобразной местной коалесценцией гидрофобных оболочек. [c.284]


    В реакциях (I) и (1а) могут участвовать не только ионы Н3О+, но и другие доноры протонов, например молекулы органических кислот и т. п. Вещество В, которое образуется на стадии (И1), или остается в адсорбированном состоянии, или десорбируется в раствор. В стадии разряда (И) участвует частица ВН дс. Эта частица должна восстанавливаться с более высокой скоростью, чем ионы гидроксония, так как, во-первых, она является поверхностно-активной (go>0), а во-вторых, энергия адсорбции продукта реакции ВН д или В больше, чем энергия адсорбции атомов водорода на поверхности ртути. Оба эти фактора согласно теории замедленного разряда приводят к ускорению реакции. В некоторых случаях перенос электрона на частицу ВН дс происходит настолько быстро, что скорость каталитического выделения водорода лимитируется стадией (I). Уравнение полярографической волны в условиях медленной протонизации в буферных растворах имеет вид [c.379]

    Работа, необходимая для введения органического вещества в электрическое поле, вычитается из энергии адсорбции этого вещества на незаряженной поверхности оУд. Последняя определяется эффектом выжимания , т. е. разностью энергий сольватации органических молекул в объеме раствора и в поверхностном слое, а также эффектом специфического взаимодействия органического вещества с металлом, например, при наличии в молекулах сопряженных я-электронных связей. Поэтому для энергии адсорбции органического вещества в электрическом поле, отнесенной к молю адсорбированных молекул, получаем [c.136]

    Бокрис, Бломгрен и Конвей используют модифицированную изотерму Ленг-мюра, в которой свободная энергия адсорбции является убывающей функцией от поверхностной ко1щептрации, но не в первой степени, как в теории Фрумкина, а в степени, отличной от единицы. Бокрис, Деваггатхан и Мюллер учитывают конкуренцию за место в двойном слое И ежду молекулами воды и органического вещества, подчеркивая роль ориентации диполей воды на поверхности раздела, зависящую от ее заряда. [c.248]

    Для специфической адсорбции неорганических ионов из смешанных растворов с постоянной ионной силой М. А. Воротынцевым была развита модельная теория, учитывающая дискретный характер и конечный объем специфически адсорбированных ионов, экранирование их зарядов электронной плазмой металла и ионной плазмой диффузного слоя, а также возможный частичный перенос заряда в результате донорно-акцепторного взаимодействия этих ионов с электродом. Теория ограничена условиями неизменности емкости плотного слоя при адсорбции ионов и малыми величинами заполнения ими поверхности, но ее достоинством кроме строго физического подхода является то, что ПОМИМО опытных значений дифференциальной емкости плотного слоя в растворе поверхностно-неактивного электролита (Сог) уравнения теории содержат только два подгоночных параметра. Одним из них является свободная энергия адсорбции ДО а при фо =0 и ионной силе раствора с-> О, другим — безразмерный параметр А, который характеризует диэлектрические свойства плотного слоя и ге- [c.147]

    Адсорбция играет важную роль во многих физико-химических и физических процессах. Советскими учеными П. А. Ребиндером, Ю. В. Горюновым и Е. Д. Щукиным было, например, установлено, что адсорбция поверхностно-активных веществ уменьшает энергию химических связей в поверхностном слое твердого тела и соответственно уменьшает прочность последнего (эффект Ребиндера). [c.137]

    Для металлов с низким перенапряжением Н. И. Кобозев предполагает возможность непосредственной десорбции адсорбированных атомов с поверхности электрода с переходом их в глубину раствора вне сферы действия поверхностных сил. При чисто эмиссионном механизме десорбции перенапряжение при заданной плотности тока не должно зависеть от энергии адсорбции и, следовательно, от природы металла, а коэффициент Ь не ЯТ [c.309]

    Имеющиеся в литературе данные по адсорбции поверхностно активных веществ на твердых электродах гораздо менее систематизированы. Хотя силы взаимодействия между частицами данного вещества в твердом и жидком состоянии не. имеют существенных различий, все же опыт показывает, что совершенно однородна только поверхность чистого металла в жидком состоянии. Кристаллическое твердое тело не однородно, так как даже в спектроскопически чистом металле различные грани, ребра и углы кристаллов обладают неодинаковым запасом энергии. Твердые тела, кроме того, обычно шероховаты. В общем случае на неполированной поверхности поверхностное натяжение в разных точках твердого тела имеет различную величину. [c.343]

    Не менее интересно торможение электродных реакций при возникновении адсорбционных слоев при отсутствии специальных посторонних добавок. Как было показано А. И. Левиным, с сотрудниками, при достаточной энергии адсорбции значительная часть активных участков катодной поверхности может быть заполнена малорастворимыми соединениями, возникающими в приэлектродных слоях вследствие концентрационных изменений и сдвигов в ионных равновесиях, наблюдаемых в католите при электролизе. Энергия адсорбции промежуточных соединений, концентрирующихся у электродной поверхности, так же как и в случае действия посторонних поверхностно активных веществ, зависит от соотношения между потенциалом нулевого заряда, характерным для данного электродного металла, и рабочей областью потенциалов, при которых протекает процесс электроосаждения металла. [c.351]

    Адсорбция играет важную роль во многих физико-химических и физических процессах. Советскими учеными П. А. Ребиндером, Ю. В. Горюновым и Е. Д. Щукиным было, например, установлено, что адсорбция поверхностно-активных веществ уменьшает энергию химических связей в поверхностном слое твердого тела и соответственно уменьшает прочность последнего (эффект Ребиндера). Исследование этого явления лежит в основе нового направления науки — физико-химической механики. Использование эффекта Ребиндера дает огромный экономический эффект. Благодаря ему ускоряют процессы механической обработки металлов, бурения горных пород и др. [c.133]

    Для коллоидных систем, размеры частиц которых лежат в интервале 10 —10 см (100—1 ммк), удельная поверхность приобретает предельно большое значение при дальнейшем дроблении, если оно возможно в данных условиях, поверхность раздела исчезает и образуется гомогенная система — молекулярная смесь, или истинный раствор. Поэтому явления, происходящие на поверхности раздела фаз и называемые поверхностными (концентрирование энергии, адсорбция, смачивание), имеют огромное значение. На них, в частности, основаны рекуперация растворителей, обогащение руд флотацией, смазка, поглощение вредных газов и водяных иаров, получение устойчивых эмульсий, пен и пр. [c.49]

    Следует отметить, что проникновение паров воды через толщу смазки, а затем и через адсорбционный слой поверхностно-активных веществ к поверхности металла будет затрудняться еще и тем, что диффундирующим парам необходимо преодолеть силы взаимодействия между адсорбированными молекулами и адсорбентом, вытеснить эти молекулы из поверхности металла и самим занять их место. Если энергия адсорбции поверхностно-активных веществ, находящихся в смазке, на поверхности металла превосходит энергию связи паров воды с той же адсорбиру ющей поверхностью, то самопроизвольная диффузия через адсорбционный слой не будет происходить и тем самым обеспечится надежная защита изделия от атмосферной коррозии. [c.422]

    Расчеты потенциальной адсорбционной поверхности и моделирование диффузии по поверхности слабо связывающихся с поверхностью адсорбатов (N2, Аг, СН4) были выполнены для сравнения моделей поверхности и для определения их правильности при сравнении с доступными экспериментальными значениями. Примерно одинаковые теплоты адсорбции получены на релаксированной, нерелаксированной и случайно сформированной поверхностях ( 0,5 кДж/моль), но релаксированная поверхность проявляла большую гетерогенность с широким распределением по величинам энергий адсорбции. Поверхностная диффузия на релаксированной поверхности была медленнее, чем на остальных поверхностях, со слегка большими энергиями активации (0,5-1,0 кДж/моль). Строгие сравнения [c.55]

    Взаимодействие кислорода с чистой поверхностью металла протекает в три этапа I) адсорбция кислорода, 2) иуклеация, т. е. образование зародышей, 3) рост сплошной оксидной пленки. На первых стадиях адсорбции пленка состоит из атомов кислорода, так как свободная энергия адсорбции атомов кислорода превышает свободную энергию диссоциации его молекул. Методом дифракции медленных электронов удалось установить, что атомы некоторых металлов входят в состав адсорбционной пленки и образуют относительно стабильную двухмерную структуру из ионов кислорода (отрицательно заряженных) и металла (положительно заряженных). Как уже говорилось в отношении пассивирующей пленки (разд. 5.5), адсорбционная пленка, составляющая доли монослоя, термодинамически более стабильна, чем оксид металла. На никеле, например, она сохраняется вплоть до точки плавления никеля [1 ], тогда как N 0 разрушается вследствие растворения кислорода в металле . Дальнейшая выдержка при низком давлении кислорода ведет к адсорбции на металле молекул Оа, проникающих сквозь первичный адсорбционный слой. Так как второй слой кислорода связан менее прочно, чем первый, он адсорбируется не диссоциируя. Возникающая в результате структура более стабильна на переходных, чем на непереходных металлах [2]. Любые дополнительные слои адсорбированного кислорода связаны еще слабее, и наружные слои становятся подвижными при повышенных температурах, о чем свидетельствуют рентгенограммы, отвечающие аморфной структуре. Вероятно, ионы металла входят в многослойную адсорбционную пленку в нестехиометрических количествах и к тому же относительно подвижны. Например, обнаружено, что скорость поверхностной диффузии атомов серебра и меди выше в присутствии адсорбированного кислорода, чем в его отсутствие [3].  [c.189]

    Следует отметить, что русские ученые разработали альтернативный путь для вычисления взаимодействия диэлектриков (Лившиц, 1955, 1956 Дзиазлошинский и др., 1960). Использование этого метода для вычисления энергий взаимодействия коллоидных частиц требует знаний диэлектрических свойств в пределах широкой области частот — данных, которые отсутствуют в настоящее время для многих веществ. Поэтому химики-коллоидники вынуждены прибегать к грубым приближениям, предлагаемым теорией Лондона. Однако эта теория разработана довольно хорошо в применении к дальнедействующим силам между отшлифованными поверхностями, поверхностной энергии неполярных жидкостей и энергии адсорбции простых неполярных молекул на твердых телах — например, бензол на графите (Киселев, 1965). Можно с уверенностью предположить, что эта теория дает правильный порядок величины энергии взаимодействия коллоидных частиц. [c.95]

    Поверхность кристаллических адсорбентов вследствие их упорядоченного строения характеризуется периодичностью адсорбционных свойств. Поэтому на ней будет иметь место правильное чередование участков, в которых величина адсорбционных сил несколько превышает среднюю, и участков, где ее значение меньше. Следовательно, энергия адсорбции может быть различной в зависимости от того, расположена ли молекула над поверхностным ионом или она находится как раз над центром пхэверхностной элементарной ячейки. Если при динамическом равновесии вследствие флюктуаций тепловой энергии молекула может получить достаточное количество энергии, чтобы десорбироваться, то можно ожидать, что, получив меньшее количество энергии, она приобретет опособность двигаться от одной точки к другой, не теряя полностью контакта с поверхностью. [c.92]

    В последнее время было установлено, что быстро протекающая адсорбция может часто сопровождаться последующим более медленным поглощением того же газа. Прн повышении давления происходит поглощение дополнительной порции газа, величина которой зависит от давления. Изучение этого явления но многих случаях проводилось на металлических пленках, полученных испарением и конденсацией паров металлов. Поскольку эти пленки являются микропористыми и поскольку даже физическая адсорбция газов на тонкопористых системах, например на угле, может требовать энергии активации [272] (т. е. энергии активации поверхностной миграции), то результаты, полученные на пленках, по-видимому, нельзя считать окончательным доказательством наличия эие згии активации в последних стадиях адсорбции. [c.149]

    Наряду с адсорбцией ионов, вызываемой электростатическими силами, может иметь место специфическая для каждого сорта частиц адсорбция, вызываемая силами Ван дер Ваальса или химическими силами. Проявление последних приводит к адсорбции ионов на одноименно заряженной поверхности, а также к адсорбции органических веществ молекулярного типа. При этом влияние анионов может наблюдаться не только на восходящей ветви электрокапиллярной кривой (электростатические силы), но и на нисходящей (химические силы). Аналогичный эффект оказывают катионы. Соответственно максимум электрокапиллярной кривой смещается в электроотрицательную (действие анионов) или электроположительную (действие катионов) сторону. Так как работа адсорбции положительна (процесс совершается самопроизвольно), поверхностная энергия адсорбента уменьшается, т. е. уменьшается а. В присутствии поверхностноактивных веществ молекулярного типа смещение максимума не наблюдается, но величина о заметно снижается. Смещение потенциала электрода в положительную или отрицательную сторону до значений, при которых электростатические силы начинают преобладать над силами специфической адсорбции, приводит к прекращению действия поверхностно-активных веществ, вследствие их вытеснения из двойного электрического слоя, и электрокапиллярная кривая сливается с кривой, полученной в отсутствие поверхностно-активных веществ. Соответствующие потенциалы называются положительным и отрицательным потенциалами десорбции (е .с и бдес) и ограничивают область потенциалов, внутри которой происходит адсорбция поверхностно-активных веществ (от бдес до бдес). [c.100]

    Адсорбция поверхностно активных веществ на поликристаллических металлических электродах находится в зависимости от поверхностной энергии на отдельных гранях кристаллов и поверхностной энергии на ребрах и вершинах кристаллов. По мнению Лангмьюра, каждый поверхностный атом металла служит адсорбционным центром, способным поверхностной энергией связать ион, атом или молекулу адсорбируемого вещества. [c.103]

    Выделение систем с определенным размером частиц в особый класс коллоидных систем не является чисто формальным. Высокая дисперсность придает веществам новые качественные признаки повышенную реакционную способность и растворимость, интенсивность окраски, светорассеяние и т. п. Резкое изменение свойств вещества с повышением дисперсности связано с быстрым увеличением суммарной поверхности раздела между частицами и средой. Большая поверхность раздела создает в коллоидных системах большой запас поверхностной энергии Гиббса, который делает коллоидные системы термодинамически неустойчивыми, чрезвычайно реакционноспособными. В этих системах легко протекают самопроизвольные процессы, приводящие к снижению запаса поверхностной энергии адсорбция, коагуляция (слипание дисперсных частиц), образование макроструктур и т. п. Таким образом, самые важные и неотъемлемые черты всякой дисперсной системы — гегетрогенность и [c.365]

    Как показывает название, в основе адсорбционной хроматографии лежит адсорбция разделяемых веи еств на твердой поверхности выбранного адсорбента. Адсорбция обусловлена или физическими ван-дер-ваальсовыми силами межмолекулярного взаимодействия в системе адсорбат—адсорбент (молекулярная хроматография), или силами химического сродства, действующими, например, в процессе реакции при обмене ионов разделяемых компонентов на поверхностные ионы применяемого ионообменного адсорбента (ионообменная хроматография). В обоих случаях главным условием для осуществления разделения должно быть различие энергии адсорбции разделяемых веществ, что равносильно различию коэффициентов адсорбции. [c.11]

    Величина Гг, введенная Гиббсом, есть избыток числа молей -го компонента в объеме поверхностного слоя площадью 5=1 по сравнению с числом молей в том же объеме, если бы смежные фазы переходили одна в другую без изменения плотности. Эта величина называется абсолютной величиной адсорбции -го компонента у данной поверхности. Для определения направленности адсорбционных процессов и устойчивости образующихся слоев целесообразно определить избыточную свободную энергию Гельмгольца поверхностного слоя или свободную поверхностную энергию Гельмгольца. В соответствии с уравнением (XIII. 107) можно записать [c.347]

    В стадии разряда (II) участвует частица ВН дс. Эта частица должна восстанавливаться с более высокой скоростью, чем ионы гидроксония, так как, во-первых, она является поверхностно-активной (g o > 0), а, во-вторых, энергия адсорбции продукта реакции ВНадс или В больше, чем энергия адсорбции атомов водорода на поверхности ртути. Оба эти фактора согласно теории замедленного разряда приводят к ускорению реакции. [c.393]

    Другая отличительная особенность процессов адсорбции на металлах группы платины по сравнению с ртутным электродом связана уже не с механизмом адсорбции, а с характером распределения адсорбированных частиц по энергиям связи. Если на ртути идеально соблюдается энергетическая равноценность адсорбционных мест, то в случае твердых электродов нельзя не принимать во внимание большую вероятность нарушения такой однородности. Прежде всего могут отличаться по энергиям адсорбции различные грани. Значения энергий адсорбции на межкристал-литных границах, в узких шелях, микропорах, в местах включений посторонних частиц в поверхностный слой могут быть сун1е-ствеино иными по сравнению со значениями энергий адсорбции на чистых гранях. Особыми местами являются также вершины и ребра кристаллитов, выходы дислокаций и другие дефекты поверхности. Следует учитывать, что часто могут иметь место не [c.87]

    Адсорбционное модифицирование графитированных саж и кремнеземов с (успехом используют для получения адсорбентов с разной химией поверхности. Для этого поверхность адсорбента-носителя покрывают плотными монослоями сильно адсорбирующихся на нем молекул или макромолекул, содержащих разные функциональные группы. Таким образом можно значительно увеличить набор селективных адсорбентов для хроматографии и в результате увеличения однородности поверхности и блокировки тонких пор повысить эффективность колонн. При этом достигается не только нужная специфичность адсорбента, но и, благодаря экранированию модификатором силовых центров самого адсорбента-носителя, снижается общая энергия адсорбции, в особенности вклад в нее энергии неспецифических межмолек улярных взаимодействий. Это вызывается тем, что, в отличие от неорганического адсорбента-носителя, средняя поверхностная концентрация силовых центров (атомов, образующих молекулы модификатора) меньше, так как расстояния между молекулами модификатора даже в- плотном монослое определяются их вандерваальсовыми размерами. Уменьшение энергии адсорбции позволяет понизить температуру колонны при разделении данной смеси. [c.76]


Смотреть страницы где упоминается термин Энергия адсорбции поверхностная: [c.219]    [c.268]    [c.88]    [c.37]    [c.39]    [c.37]    [c.40]    [c.94]    [c.96]    [c.97]    [c.94]    [c.79]    [c.21]    [c.220]   
Структура металических катализов (1978) -- [ c.12 , c.157 , c.251 , c.259 , c.271 , c.286 , c.452 ]




ПОИСК





Смотрите так же термины и статьи:

Адсорбция поверхностная

Адсорбция энергия

Поверхностная энергия



© 2025 chem21.info Реклама на сайте