Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые вторичная структура

    Вторичная структура нуклеиновых кислот [c.218]

    Нуклеиновые кислоты. Основным типом организации вторичной структуры нуклеиновых кислот является двойная спираль, состоящая из двух полинуклеотидных цепей. Существует ли со стороны регулярной структуры спирали дополнительное-воздействие на воду по сравнению с воздействием отдельных нуклеотидов Этот вопрос исследовался акустическим методом для различных типов спиральных структур полинуклеотидов [149], В качестве гидратационной характеристики использовали концентрационный инкремент скорости ультразвука А, который связан с парциальными объемами и сжимаемостью соотношением [c.61]


    При нагревании водородные связи разрываются — вторичная структура белка при 60—70° С разрушается, происходит его денатурация. Нуклеиновые кислоты выдерживают нагревание до 100° С и действие разбавленных щелочей и кислоты. Отсюда видно, что их строение более прочное, что характерно для структур, играющих роль матриц. [c.41]

    Вторичная структура нуклеиновых кислот создается за счет взаимодействия соседних по полинуклеотидной цепи мономерных звеньев, а в случае двуспиральных молекул (нли участков молекул) также взаимодействием нуклеотидных остатков, находящихся напротив друг друга в двойной спирали. Третичная структура нуклеиновых кислот организуется за счет взаимодействия нуклеотидных остатков, принадлежащих различным элементам их вторичной структуры. [c.20]

    Ассоциации НО осуществляется за счет водородного связывания (спаривание) и межплоскостного взаимодействия (стэкинг). Стэкинг-взаимодействию придается более существенное значение в поддержании вторичной структуры нуклеиновых кислот, а Н-связям приписывают в большей мере направляющую роль во взаимной ориентации НО в процессе стэкинга. [c.235]

    Первичную структуру здесь образуют цепочки из мононуклеотидов. Эти цепочки скручены в а-сиираль (вторичная структура). Оказалось, что в нуклеиновых кислотах, содержащих дезоксирибозу (дезоксирибонуклеиновая кислота —ДНК), спирали состоят из двух строго параллельных цепочек полинуклеотидов, причем длина спирали может достигать 30 000 А прн толщине 20 А. [c.181]

    Нуклеиновые кислоты так же, как белки, обладают вторичной структурой, имеющей большое значение для биологических процессов. Установлено, что ДНК существует в виде двойной спирали, образованной при соединении двух самостоятельных [c.319]

    Вариация структуры нуклеиновых кислот происходит за счет вариации последовательности гетероциклических оснований в их боковой части В состав ДНК входят в основном фрагменты аденина, гуанина, цитозина и тимина, РНК — фрагменты аденина, гуанина, цитозина и урацила Вторичная структура нуклеиновых кислот, представляющая собой двойную спираль переплетающихся двух полимерных цепей ДНК, двуспиральных фрагментов РНК, одноцепочечные участки РНК, обязана своим образованием возникновению водородных связей между пиримидиновыми и пуриновыми основаниями Это крупнейшее открытие XX века, сделанное Дж Уотсоном и Ф Криком в 1953 г (Нобелевская премия 1962 г ), стало возможным благодаря интеграции различных биологических, химических и физических методов исследования [c.928]


    ЭТОМ образуются специфич. пары комплементарных оснований, имеющие почти одинаковые размеры. Поэтому двойная спираль имеет очень однородную регулярную структуру, мало зависящую от конкретной последовательности оснований-св-во очень важное для обеспечения универсальности механизмов репликации (самовоспроизведение ДНК или РНК), транскрипции (синтез РНК на ДНК-матрице) и трансляции (синтез белков на РНК-матрице). В каждом из этих т. н. матричных процессов К. играет определяющую роль. Напр., при трансляции важное значение имеет К. между тройкой оснований матричной РНК (т. и. кодоном, см. Генетический код] и тройкой оснований транспортной РНК (поставляют во время трансляции аминокислоты). К. определяет также вторичную структуру нуклеиновых к-т. Одноцепочечные РНК благодаря К. оснований, навиваясь Сами на себя, образуют относительно короткие двухспиральные области ( шпильки и петли ), соединенные одноцепочечными участками, К. в отдельных парах оснований ДНК может нарушаться из-за появления отклонений в их строении, к-рые могут возникать спонтанно или в результате действия разл. факторов (химических и физических). Следствием этих изменений м. б. мутации. [c.443]

    Что же можно сказать о вторичной структуре нуклеиновых кислот Приведенная ниже картина находится в соответствии как с химическими данными, так и с результатами рентгеноструктурного анализа. Две полинуклеотидные цепи, идентичные, но ориентированные в противоположном направлении, закручены друг относительно друга в двойную спираль, имеющую диаметр 18 А (1,8 нм) (схематически показана на рис. 37.8). Обе спирали являются правыми и содержат по 10 нуклеотидов на один виток. [c.1062]

    Наконец, несколько слов о ситуации, наблюдаемой в ряду синтетических и природных полимеров. Термин первичная структура определяет строение полимера, а также конфигурацию всех хиральных центров, входящих в основную и в боковые цепи полимера. Если конформация цепи полимера известна, то говорят о вторичной структуре . В случае полимеров, в частности некоторых белков, нуклеиновых кислот и полисахаридов, может происходить дополнительное упорядочение структуры за счет множества слабых нековалентных взаимодействий между несколькими цепями (эти взаимодействия могут быть как внутримолекулярными, так и межмолекулярными). Термин третичная структура , может быть использован для описания молекул с известными первичной и вторичной структурами в том случае, если они находятся в меж-молекулярном взаимодействии, например образуют двойные нли тройные спирали. [c.33]

    Итак, вторичные структуры белковых цепей стабилизованы водородными связями, играющими также большую роль в кон-формационном строении нуклеиновых кислот и углеводов. [c.94]

    Далеко не всегда связь между структурой молекулы и ее функциональными свойствами проста и очевидна. Мы видели, как сложно установление такой связи для белков. Иначе обстоит дело с нуклеиновыми кислотами, в частности, с ДНК. Здесь по крайней мере одна важнейшая функция — редупликация ДНК — была качественно объяснена сразу же после открытия вторичной структуры. [c.222]

    Водородные связи играют большую роль в организации и стабилизации вторичных структур нуклеиновых кислот. Однако в последнее время накапливаются данные, свидетельствующие о том, что водородные связи являются не единственными, а в ряде случаев и не самыми существенными силами при образовании вторичных структур нуклеиновых кислот. Серьезными конкурентами водородных связей выступают так называемая гидрофобные связи и взаимодействия соседних нуклеиновых оснований в полинуклеотидной цепи (sta ked for es, по-ви-димому, я—я-взаимодействия). —Ярил1. ред.].  [c.737]

    Во всем предыдущем изложении поляризуемость рассматривалась как скаляр. В действительности же поляризуемость несферической электронной системы — молекулы или атомной группы — тензорная величина, имеющая различные значения по разным направлениям в молекуле. Это необходимо учитывать при рассмотрении взаимодействия на малых расстояниях, в частности при плотной упаковке молекул в кристаллах и жидкостях. Сама упаковка молекул в молекулярных кристаллах обусловлена анизотропными дисперсионными силами [27]. Так, плоские л-электронные системы — ароматические соединения, азотистые основания (см. стр. 83) и т. д. — сильнее всего взаимодействуют при параллельном расположении. Эти взаимодействия по существу и определяют вторичную структуру нуклеиновых кислот (см. гл. 8). [c.195]

    Гетероциклические основания определяют специфические свойства нуклеиновых кислот. Нх реакционноспособность по отношению к различным агентам зависит от природы основания, условий проведения реакции, а для олиго- и полинуклеотидов — вторичной структуры соответствующего соединения. [c.384]

    Реакции с карбодиимидом. Для исследования вторичной структуры нуклеиновых кислот применяется реакция оснований с производными карбодиимида, в результате которой образуются соответствующие аддукты. [c.389]


    Водородная связь играет большую роль в процессах, происходящих при обычных температурах. Она обусловливает спира 1ьные конфигурации вторичной структуры молекул белков, нуклеиновых кислот и важна в биологических процессах, например, в механизме памяти. Водородная связь ответственна за сильную ассоциацию молекул и высокую диэлектрическую постоянную не только воды, ио и спиртов, и других жидкостей. Благодаря водородным связям лед легче жидкой воды, так что лед образуется на поверхности воды и предохраняет оставшуюся жидкую воду от потери тепла. [c.157]

    Первичную структуру здесь образуют цепочки из мононуклеотидов. Эти цепочки скручены в а-спираль (вторичная структура). Оказалось, что в нуклеиновых кислотах, содержащих дезоксирибозу (дезоксирибонуклеиновая кислота —ДНК), спирали состоят из двух строго параллельных цепочек 11ол1[иуклеотндов, причем длина спирали может достигать 30 000 А при толщине 20 А. На рис. 86 приведена модель а-спиралн ДНК видны пятичленные кольца рибоз и затушеванные кольца пуриновых и пиримидиновых оснований. На поперечном разрезе модели видно, что основания располагаются ближе к оси спирали. [c.204]

    Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной имформации, а также определяют синтез нужных белков в клетке я его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные неразветвлет1ые) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК- [c.441]

    Репликация вироидной РНК происходит в ядре зараженной клетки вероятная схема этого процесса такова (рис. 174). Сначала на кольцевой +)матрице синтезируется комплементарная (—)цепь. Эгот синтез осуществляется клеточным ферментом в качестве одного из кандидатов рассматривают ДНК-зависимую РНК-полимеразу И. Возможно, расширению специфичности этого фермента, обычно использующего двухнитевую ДНК-матрицу, способствует то обстоятельство, чго вироидная РНК содержит необычно высокую (для однонитевых нуклеиновых кислот) долю элементов с вторичной структурой. Синтез идет, вероятно, по модели разматывающегося рулона (см. раздел 1 этой главы), и в результате появляются линейные олигомерные (—)нити. Затем происходит образование линейных олигомерных (+)нитей не ясно, используются ли при этом в качестве матрицы олигомеры (-)нитей или образовавшиеся из них кольцевые молекулы. Далее линейные (+)олигомеры превращаются в кольцевые мономерные молекулы — конечный продукт реплика- [c.330]

    Нуклеиновые кислоты содержатся в каждой живой клетке. Они принимают решающее участие в биосинтезе белка и ответственны за передачу генетической информации. В настоящее время уже многое стало известно о способе передачи такой информации, которая осуществляется вторичной структурой ДНК, имеющей вид спирали из двух витков дезоксирибозофосфатной цепи, связанных с помощью водородных связей. Водородные связи соединяют остаток аденина из одного витка спирали с торчащим напротив остатком тимина второго витка, а также остаток цитозина одного витка с остатком гуанина другого. Такой порядок связывания двух дезоксирибозофосфатных цепей строго специфичен водородная связь не может образоваться между аденином одной цепи и гуанином или цитозином другой. Не может она возникнуть и между цитозином одной цепи и тимином или аденином другой и т. д. Такая специфичность определяется строением пуриновых и пиримидиновых оснований или их взаимным расположением, а возможно, и тем и другим. Приведенная схема иллюстрирует условия образования водородных связей  [c.355]

    Корреляцию знака эффекта Коттона с хиральностью хромофора обычно получают эмпирически в ввде соответствующих правил. Напр., установлено такое правило для . r-Hena-сыщенных кетонов положит, длинноволновому максимуму в куплете КД соответствует конформация, скрученная по правой спирали, а отрицательному - по левой. ЗКго правило носит назв. правила экситонной хиральности. Его широко применяют для определения абс. конфигурации (напр., бензоатное правило для диолов), конфигурации и конформации природных соединений. Особенно часто эффект экситоннолз расщепления встречается в спектрах белков и нуклеиновых к-т. Методы ДОВ и КД позволяют определять содержание вторичных структур в белках и поли-пептвдах. [c.277]

    Всплывные масла 2/15 Вспышки температура 1/838, 830,831, 1175 2/102, 103, 304 3/1187 Встречная ди( узи9 3/256 Втор... 1/838 Вторичная структура белков 1/471, 473, 474 2/877 макромолекул 2/1263, 1266 нуклеиновых кислот 2/1323, 1324  [c.571]

    Устойчивость вторичной структуры нуклеиновых кислот обеспсчивастся глалным обра.чом водородными связям и, образующимися между двумя парами азотистых оснований в молекулах ДИК—-аденин — тимин и гуанин— цитозин, в молекулах РНК — аденин - урацил и гуанин - - цитозин. Такие пары азотистых оснований, л котор1>(х они соединены водородными связями, называют комплементарными. [c.53]

    Под действием у-излучения в опытах in vitro происходит денатурация ДНК и РНК, разрушение вторичной структуры нуклеиновых кислот, что в ИК-спектрах выражается в ухудшении разрешения отдельных полос поглощения, изменении относительных интенсивностей, соответствующих v( =0), v,(NH2), v iNHz), 5(NH2), v( = ). Снижение интенсивностей указанных полос поглощения свидетельствует о дезаминировании азотистых оснований ДНК и РНК и насыщении двойных связей пиримидинов. [c.96]

    С ТОЧКИ Зрения фундаментальной структуры и биологической правильности спаривание АсТиОсСне вызывает сомнений. Эта комплиментарность лежит в основе корреляции между структурой и функцией нуклеиновых кислот (см. гл. 22.5). Она является также основной особенностью предложенной недавно альтернативной вторичной структуры ДНК, где сделана попытка решить одну проблему, на которую не дает ответа модель Уотсона-Крика. Это ни что иное как серьезные топологические затруднения, возникающие при разделении цепей полностью заплетенной двойной спирали ДНК в процессе биологической репликации (см. разд. 22.5.1.1). [c.46]

    Наряду с ван-дер-ваальсовыми взаимодействиями водородные связи являются важнейшими для биологии и биофизики нехимическими взаимодействиями. Мы уже видели, что водородные связи стабилизуют вторичную структуру полипептидных цепей. То же относится к конформационному строению нуклеиновых кислот и углеводов. [c.196]

    Построение молекулярной биологии ознаменовалось крупнейшими открытиями, сделанными за сравнительно короткое время. В 1953 г. Уотсон, Крик и Уилкинз установили методом рентгенографии вторичную структуру ДНК (см. стр. 489). История этого открытия ярко описана Уотсоном [19]. Структура ДНК — двойная спираль — непосредственно объясняет способность ДНК к конвариантной редупликации. Общее понимание биосинтетической функции ДНК позволило сформулировать физическую проблему генетического кода (Гамов, 1954, см. гл. 9). В дальнейшем были выяснены детали процесса биосинтеза и характер участия в нем других нуклеиновых кислот — матричной и транспортной РНК—и нуклеопротеидов — рибосом. Эти успехи моле- [c.485]

    В нуклеиновых кислотах остатки, участвующие в образовании водородных связей с комплементарными гетерощ1клами, имеют, как правило, резко сниженную реакционную способность но сравнению со свободными гетероциклами. Например, реакция (VII.2) остатков аденина и цитозина с галогенацетальдегидами проходит с участием экзоциклической аминогруппы и атома азота гетероцикла, которые являются непосредственными участниками уотсон-криковских взаимодействий (см. рис. 26). Поэтому в этенопроизводные легко превращаются остатки, находящиеся в однонитевых участках, и существенно труднее — остатки, образующие двуспиральную структуру. Реагенты, различающие одно- и двунитевые структуры полинуклеотидов, широко используются для детального изучения вторичной структуры нуклеиновых кислот, в частности для выявления шпилечных структур. В табл. 7.7 приведены некоторые реагенты, широко применяемые для изучения пространственной структуры белков и нуклеиновых кислот методом химической модификации. [c.324]

    Нуклеиновые кислоты, как и бглки, имеют первичную и вторичную структуру. [c.715]

    С наибольшей скоростью модифицируются редкие компоиенты нуклеиновых кислот — инозин и псевдоуридин. Реакиия с карбодиимидом практически не идет с двухцепочечными полинуклеотидами. В нуклеиновых кислотах, содержащих как двухцепочечные, так и одиоцепочечные участки, модифицируются только последние, что используется при исследованиях вторичной структуры тРНК. [c.389]

    Гель-хроматографию особенно целесообразно применять в тех случаях, когда необходимо очень быстро отделить высокомолекулярные компоненты от низкомолекулярных. На специально подготовленной колонке (3X6 сл) с сефадексом 0-25 (грубым) Эрлан-деру [25] удалось всего за 2 мин полностью отделить рибонуклеазу от воды, содержащей тритий. Этот быстрый аналитический метод позволяет изучить кинетику обмена трития и на этом основании сделать выводы о степени спирализации растворенного белка. Несколько позднее аналогичная методика была успешно использована при исследовании вторичной структуры растворимых рибонуклеиновых кислот [26] и дезоксирибонуклеиновых кислот [27]. Конечно, нуклеиновые кислоты также могут быть модифицированы химическим путем, например действием диазотированной сульфаниловой кислоты [28]. Избыток реагента и побочные продукты реакции удаляют на сефадексе 0-50. [c.146]

    Размер геометрич. С. м.— наиболее общий критерий гибкости макромолекулы, поскольку он характеризует гибкость, обусловленную не только вращательной подвижностью звеньев (поворотной изомерией), но и др. физич. механизмами (см. таблицу), напр, нарушением первичной структуры макромолекулы (циклизации цепи) или ее вторичной структуры (спиральных конформаций полипептидов, нуклеиновых к-т). Полимеры, для к-рых А >100 А, условно относят к жосткоцепным. [c.197]


Смотреть страницы где упоминается термин Нуклеиновые вторичная структура: [c.62]    [c.386]    [c.637]    [c.62]    [c.55]    [c.55]    [c.125]    [c.119]    [c.79]   
Органическая химия (2002) -- [ c.928 ]




ПОИСК





Смотрите так же термины и статьи:

Нуклеиновые структура



© 2025 chem21.info Реклама на сайте