Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Митохондрия транспорт

    Внутриклеточные органеллы имеют собственные системы, концентрирующие ионы. Так, митохондрии могут концентрировать ионы К+, Са +, Mg + и других двухвалентных металлов, а также и дикарбоновые кислоты (гл. 10). У митохондрий транспорт многих веществ происходит скорее всего за счет обменной диффузии, т. е. путем вторичного активного транспорта. [c.359]

    АТФ-синтетазы из водной среды, окружающей митохондрию. Транспорт протонов происходит по полю (в сторону заряженного отрицательного внутреннего объема митохондрии). Тем самым одна и та же сила разность электрических потенциалов — способствует тому, что к каталитическому центру АТФ-синтетазы с одной стороны мембраны устремляются АДФ и фосфат, а с, другой стороны — ионы Н+. [c.111]


    Железо функционирует как основной переносчик электронов в биологических реакциях окисления — восстановления [231]. Ионы железа, и Fe +, и Fe +, присутствуют в человеческом организме и, действуя как переносчики электронов, постоянно переходят из одного состояния окисления в другое. Это можно проиллюстрировать на примере цитохромов . Ионы железа также служат для транспорта и хранения молекулярного кислорода — функция, необходимая для жизнедеятельности всех позвоночных животных. В этой системе работает только Ре(П) [Fe(111)-гемоглобин не участвует в переносе кислорода]. Чтобы удовлетворить потребности метаболических процессов в кислороде, большинство животных имеет жидкость, циркулирующую по телу эта жидкость и переносит кислород, поглощая его из внешнего источника, в митохондрии тканей. Здесь он необходим для дыхательной цепи, чтобы обеспечивать окислительное фосфорилирование и производство АТР. Одиако растворимость кислорода в воде слишком низка для поддержания дыхания у живых существ. Поэтому в состав крови обычно входят белки, которые обратимо связывают кислород. Эти белковые молекулы способствуют проникновению кислорода в мышцы (ткани), а также могут служить хранилищем кислорода. [c.359]

    Митохондрии, обработанные антимицином А (ингибитором транспорта электронов от убихинона на кислород), катализируют реакцию окисления субстратов дыхания добавленными низкомолекулярными гомологами убихинона (Q). Образующийся в ходе реакции хинол (QH2) окисляется затем кислородом в реакции, катализируемой суб-митохондриальными фрагментами. В присутствии избыточного количе- [c.438]

    Экспериментально доказано существование по крайней мере трех индивидуальных переносчиков, катализирующих электронейтральный обмен фосфата на анионы дикарбоновых кислот, а-кетоглутарата — на анионы дикарбоновых кислот и анионов трикарбоновых кислот — на анионы дикарбоновых кислот. С участием специфических переносчиков осуществляется транспорт неорганического фосфата и глутамата в митохондриях. Субстратом переносчика фосфата в митохондриях является моноанион фосфорной кислоты, и распределение фосфата по обе стороны мембраны зависит от величины градиента pH. Таким образом, градиент pH, генерируемый на мембране в результате работы дыхательной цепи или АТФ-азы митохондрий, реализуется в градиент концентрации фосфата, а последний, в свою очередь, является движущей силой в перераспределении анионов ди- и трикарбоновых кислот. [c.447]

    АКТИВНЫИ ТРАНСПОРТ ИОНОВ a=+ В МИТОХОНДРИЯХ ПЕЧЕНИ [c.449]

    В настоящей работе предлагается познакомиться с основными закономерностями активного транспорта Са + и связью этого процесса с метаболической функцией митохондрий печени крысы. [c.449]


    Значительные количества Са + могут быть накоплены в митохондриях только в присутствии проникающего аниона в среде инкубации, например фосфата или ацетата. Перенос фосфата через мембрану осуществляется с помощью специфического фермента-переносчика, активность которого подавляется низкими концентрациями 5Н-ядов. В присутствии сульфгидрильных ядов митохондрии неспособны к окислительному фосфорилированию и накапливают очень ограниченное количество Са +. Добавление АДФ или a + в таких условиях не стимулирует дыхания. Последующее добавление ацетата, перенос которого нечувствителен к этим ядам, стимулирует дыхание и обеспечивает транспорт добавленного ранее Са + во внутреннее пространство митохондрий. [c.451]

    В настоящей работе предлагается ознакомиться с основными функциональными особенностями системы активного транспорта a + в митохондриях. [c.451]

    Измерение активного транспорта Са + в митохондриях. В день опыта готовят две среды инкубации (по 50 мл) следующего состава  [c.451]

    Ингибиторы транспорта кальция. В работе предлагается ознакомиться с некоторыми особенностями системы аккумуляции Са + в митохондриях. С этой целью ставят серию проб по следующей схеме. [c.452]

    Проба 6. В среду 1, содержащую рутениевый красный, добавляют митохондрии, сукцинат, СаСЬ, АДФ и 2,4-динитрофенол. Убеждаются в том, что рутениевый красный полностью блокирует активный транспорт Са2+ и не влияет на окислительное фосфорилирование. [c.453]

    Во второй части работы проводят четыре серии таких же опытов, однако перед измерением соответствующей активности митохондрии предварительно нагружают небольшим количеством Са + (10— 20 нмоль Са +/мг белка). Вновь оценивают специфичность исследуемой транспортной системы в отношении катионов и сравнивают полученные данные с результатами первой части работы. В одном из проводимых для каждого катиона измерений убеждаются в том, что процесс его активного транспорта в митохондриях блокируется рутениевым красным (10-7 М). [c.455]

    Провести отдельные рН-метрические измерения окислительного фосфорилирования, активного транспорта Са + и транспорта Са + на фоне фосфорилирования АДФ в митохондриях. Рассчитать полученные данные и убедиться в том, что окислительное фосфорилирование не влияет на скорость активного транспорта Са +, а добавление Са " полностью блокирует окислительное фосфорилирование. [c.471]

    Провести кинетический анализ ингибирующего действия ДНФ на процессы активного транспорта Са + и окислительного фосфорилирования АДФ в митохондриях. Измерения следует провести отдельно для 3 различных концентраций Са + и АДФ. Полученные результаты проанализировать в координатах Диксона (vo/v, от концентрации ДНФ. [c.471]

    Присутствие Са + в окружающей среде не влияет на процесс окислительного фосфорилирования. В этом убеждает следующей опыт. К митохондриям, инкубируемым в среде с сукцинатом, добавляют 10 М рутениевый красный. Из-за инактивации системы транспорта Са + последующее добавление катиона не вызывает обратимой активации дыхания. Добавление АДФ в таких условиях (весь добавленный Са + остается в среде инкубации) приводит к активации дыхания, степень которой не отличается от контроля (сравни с первой пробой). [c.478]

    Активный транспорт ионов Са + в митохондриях печени [c.509]

    Специфичность системы транспорта кальция в митохондриях [c.509]

    Изучение кинетики транспорта неорганического фосфата в митохондриях [c.509]

    Контролируемое ферментами образование Р. с. в живых организмах происходит и в процессах нормальной жизнедеятельности, напр, при биосинтезе простагландинов, транспорте электронов в митохондриях, обезвреживании бактерий фагоцитирующими клетками. Образованием в организме активных Р. с. объясняют процессы старения. Различные Р. с. обнаружены в космосе. [c.156]

    Многие белки в мембранах выполняют ферментативные функции. Так, например, система транспорта электронов в митохондриях локализована в мембранах (гл. 10), и ряд ферментов, обладающих высокой [c.354]

    Синтез АТР в митохондриях сильно ингибируется олигомицином. Однако имеются и, такие процессы, которые, потребляя энергию из цепи переноса электронов, в то же время нечувствительны к олигомицину. К таким процессам относится ионный транспорт через митохондриальную мембрану и другой энергозависимый процесс — обращенный поток электронов от сукцината к ЫАО+ (разд. Д,7). В обоих случаях олигомицин не оказывает никакого действия, однако динитрофенол и другие разобщающие агенты блокируют оба процесса. Все эти факты станут понятными, если предположить, что в присутствии олигомицина синтезируется высокоэнергетическое промежуточное соединение а обращенный поток электронов и перекачка ионов могут идти за счет свободной энергии гидролиза этого соединения без образования АТР. Динитрофенол разобщает все реакции, вызывая гидролиз Х- , а олигомицин воздействует только на синтез АТР. Эти наблюдения объясняются также гипотезой Митчелла, согласно которой ионный транспорт предшествует синтезу АТР. [c.422]

    Роль карнитина, ускоряющего транспорт жирных кислот внутрь митохондрий, уже рассматривалась в гл. 9, разд. А,6. [c.425]

    Хлоропласты синтезируют АТР в принципе так же, как митохондрии транспорт электронов сопряжен в них с перекачиванием протонов, а энергия аккумулируется в возникающем электрохимическом протонном градиенте, использующемся для образования АТР с помощью АТР-синтетазы. В одном из ранних и наиболее убедительных тестов на хемиоосмотическое сопряжение электронного транспорта и синтеза АТР использовались тилакоидные везикулы, выделенные из хлоропластов щпината. [c.91]


    Энергия, освобождающаяся при окислении субстратов и последующем переносе электронов в дыхательной цепи, используется не только на синтез АТФ, но и для осуществления других функций митохондрий, например для активного транспорта ионов a + через митохондриальную мембрану. Если к суспензии аэробно инкубируемых митохондрий в присутствии субстрата добавить некоторое количество ионов a + (в виде какой-либо его соли), то по истечении небольшого промежутка времени весь добавленный Са + оказывается во внутримитохондриальном пространстве. В процессе активного транспорта создается и поддерживается высокий концентрационный градиент ионов Са + по обе стороны митохондриальной мембраны. Когда функционирование дыхательной цепи полностью блокировано, транспорт может обеспечиваться за счет энергии гидролиза АТФ. [c.449]

    Проба 3. В среду 2, содержащую 30 мкМ п-хлормеркурибензоат добавляют митохондрии, сукцинат, СаСЬ и 2,4-динитрофенол, Убеждаются в том, что в присутствии ацетата п-хлормеркурибензоат не влияет на транспорт Са + и сукцинатоксидазную активность. [c.452]

    Проба 4. В среду 1, содержащую п-хлормеркурибензоат, добавляют митохондрии, сукцинат, СаСЬ, 20 мМ ацетат, 2,4-динитрофенол (для быстрого исчерпания кислорода в среде). Убеждаются в том, что ацетат снимает вызванное п-хлормеркурибензоатом торможение транспорта Са2+. [c.453]

    Изучение проницаемости внутренней мембраны митохондрий для ионов Са + привело к представлению о существовании в митохондриях специфической транспортной системы. Ее активность ингибируется низкими концентрациями рутениевого красного, катионов семейства лантапидов и гексаминокобальта. Транспорт Са + специфически ингибируется антителами на митохондриальный гликопротеин, который может быть легко экстрагирован из митохондрий с помощью осмотического щока в присутствии ЭДТА. Иммунологические данные не оставляют сомнений в участии этого гликопротеина (м. м. 33 000 Да) в связывании и (или) переносе Са + через мембрану. Система транспорта Са + в митохондриях катализирует также зависимое от энергии поглощение других двухвалентных катионов, но ее специфичность па- [c.453]

    Одним из процессов, сопровождающихся переносом неорганического фосфата через мембрану митохондрий, является активный транспорт кальция. Значительные количества Са + могут быть аккумулированы митохондриями за счет энергии дыхания только в присутствии проникающих через мембрану анионов. В этом случае активация дыхания при добавлении Са + приводит к накоплению во внутримитохондриальном пространстве соответствующих проникающему аниону кальциевых солей. Таким образом, активный транспорт Са + сопровождается переносом через мембрану аниона. В физиологических условиях роль такого аниона выполняет неорганический фосфат. [c.458]

    В работе предлагается сравнить действие разобщителей на процессы окислительного фосфорилирования и активного транспорта Са + в митохондриях печени крысы. Так как протекание обеих эндергонических реакций сопряжено с поглощением (синтез АТФ) или освобождением (транспорт Са +) стехпометрических количеств ионов Н+, следует воспользоваться установкой для непрерывной регистрации pH стеклянным Н+-чувствительньш электродом (с. 474). Изменения трансмембранного потенциала прослеживают по распределению К+ (в присутствии валиномицина в бескалиевой среде — с. 442) с помощью К+-чувствительного электрода или по абсорбции проникающих синтетических катионов (например, сафранин, оксанол и др.) с помощью двухволновой спектрофотометрии. [c.469]

    Для проведения следующей части работы на полярографе подбирают максимальную концентрацию Са +, добавление которого к митохондриям в среде с сукцинатом вызывает обратимую активацию дыхания. Для прочносопряженных митохондрий печени крысы (4—5 мг белка в пробе) это составляет около 200—400 мкМ Са +. Дальнейшие измерения проводят на регистрирующем рН-метре. В ячейку рН-метра со средой инкубации и погруженными электродами добавляют последовательно митохондрии, сукцинат и выбранную концентрацию Са +. Регистрируют быстрое освобождение ионов Н+ (закисление среды) из матрикса в ответ на добавление Са +. После аккумуляции всего добавленного Са + изменения pH среды прекратятся и на фоне нового стационарного значения pH в суспензии добавляют 1—2 раза одинаковое количество титрованной НС1 или КОН для калибровки шкалы (конечная концентрация НС1 или КОН в используемых условиях должна составлять около IO М). Проводят серию аналогичных проб, содержащих увеличивающиеся концентрации ДНФ, и каждый раз регистрируют скорость закисления среды в процессе активного транспорта Са2+. Для полного торможения транспорта Са + в митохондриях диапазон концентрации ДНФ должен быть значительно (в 2—3 раза) расширен по сравнению с опытами по измерению сукцинатоксидазной активности. Делают 5—6 измерений и строят графическую зависимость скорости транспорта Са + от концентрации разобщителя (5—6 экспериментальных точек). [c.470]

    Реакции- синтеза и гидролиза АТФ катализируются АТФ-синтетазным комплексом, локализованным во внутренней мембране митохондрий. Обе реакции сопряжены с трансмембранным переносом Н+. Н+—АТФаза митохондрий сердца быка состоит из фактора и мембранного компонента / о- Фактор Р может быть отделен от мембраны и катализировать гидролиз АТФ в растворе. Реакция синтеза АТФ, сопряженная с трансмембранным переносом Н+, протекает только в том случае, когда фактор Р связан с мембраной. Мембранный компонент АТФ-синтетазного комплекса образует протонный канал , обеспечивая транспорт Н+ с внешней стороны митохондриальной мембраны к фактору Р, где находится активный центр фермента. [c.474]

    Витамин Вт (карнитин). По своему химическому содержанию — это у-ами-но-р-гидроксикарбоновая кислота бета-иноаой структуры, которая присутствует в тканях животных, растений, в микроорганизмах. Для некоторых насекомых карнитин является собственно витамином. Высшие животные синтезируют его из 1-лизина и далее используют в качестве кофермента, участвуюш,его в переносе остатков жирных кислот через мембраны из цитоплазмы в митохондрии. Карнитин, взаимодействия с коферментно связанной жирной кислотой, образует бифильное производное жирной кислоты, имеюш,ее высокое сродство к липидному слою клеточных мембран. Это свойство и обеспечивает ему легкость внедрения в мембрану и транспорт через нее. Жирная кислота высвобождается после транспорта реакцией гидролиза (схема 10.2.13). [c.281]

    Соед., подавляющие Д. (дыхат. яды), выключают энерго обеспечение организма и потому являются быстродействую щими ядами. Классич. дыхат. яды (цианиды, изоцианиды сульфиды, азиды, СО и NO) угнетают концевой фермент дыхат. цепи митохондрий цитохром-с-оксидазу). Эти же соед. угнетают транспорт Oj по организму, связываясь с гемоглобином. Др. важный класс дыхат. ядов - гидрофобные орг. в-ва, часто хиноидной природы, выступающие как антагонисты убихинона (замещенного 1,4-бензохинона), играющего ключевую роль во мн. стадиях переноса электронов по дыхат. цепи. Сильнейшие яды этого класса-токсич. антибиотики (ротенон, пирицидин, антимицин, миксотиа-зол), 2-гептил-4-гидроксихинолин-К-оксид их используют в исследованиях тканевого Д. Способность к умеренному подавлению убихинон-зависимых р-ций в дыхат. цепи свойственна мн. лек. ср-вам (напр., барбитуратам), фунгицидам и пестицидам. [c.125]

    Наиб, признанием пользуется хемиос.мотич. концепция сопряжения, предложенная в 1961 П. Митчеллом (за развитие этой концепции в 1979 ему присуждена Нобелевская премия). Согласно этой теории, своб. энергия транспорта электронов в дыхат. цепи затрачивается на перенос из митохондрий через митохондриальную. мембрану на ее наружную сторону ионов Н (рис. 2, процесс 1). В результате [c.339]

    Обычно для характеристики эффективности О.ф. используют величины Н /2е или /2е, указывающие сколько протонов (либо электрич. зарядов) переносится через мембрану при транспорте пары электронов через данный участок дыхат. цепи, а также отношение Н /АТФ, показывающее, сколько протонов нужно перенести снаружи внутрь митохондрий через АТФ-синтетазу для синтеза 1 молекулы АТФ. Величина q 2й составляет для г нктов сопряжения 1, 2 и 3 соотв. 3-4, 2 и 4. Величина Н /АТФ при синтезе АТФ внутри митохондрий равна 2 одиако еще один Н может тратиться на вынос синтезированного АТФ из матрикса в цитоплазму переносчиком адениновых нуклеотидов в обмен на АДФ Поэтому кажущаяся величина /АТФ ру,и равна 3. [c.339]

    Мембраны выполняют в клетке большое число функций. Наиболее очевидной из них является разделение внутриклеточного пространства на компартменты. Плазматические мембраны, например, ограничивают содержимое клетки, а митохондриальные — отделяют митохондриальные ферменты и метаболиты от цитоплазматических. Полупроницае-мость мембран и позволяет им регулировать проникновение внутрь клеток и клеточных органелл как ионов, так и незаряженных соединений. Проникновение многих из них внутрь клетки осуществляется против градиента концентрации. Таким образом, в процессе, известном под названием активный транспорт, совершается осмотическая работа. Протекающий в мембранных структурах бактерий и митохондрий процесс окислительного фосфорилирования служит источником энергии для организма. В хлоропластах зеленых листьев имеются мембраны с очень большим числом складок, которые содержат хлорофилл, обладающий способностью поглощать солнечную энергию. Тонкие мембраны клеток глаза содержат фоторецепторные белки, воспринимающие световые сигналы, а мембраны нервных клеток осуществляют передачу электрических импульсов. [c.337]

    Существует предположение, что вывод аспартата из митохондрии связан с потреблением энергии в этом случае можно провести аналогию с работой Na+-Ha o a в цитоплазматической мембране [104]. Механизм такого транспорта может быть сходен по характеру с механизмом поглощения аминокислот цитоплазматическими мембранными пузырьками бактерий [105—107]. Накопление аминокислот такими пузырьками, по-видимому, не зависит от АТР, но сопряжено с переносом электронов, осуществляемым специфическими, связанными с мембраной флавинсодержащими дегидрогеназами. Поглощению аминокислот пузырьками Е. old особенно эффективно содействует дегидриро- [c.424]

    Примечательно чередующееся расположение L- и D-аминокислот. Грамицидин А обусловливает транспорт ионов К+, Na+ и других одновалентных ионов через мембраны митохондрий и эритроцитов, а также через синтетические бислои. Грамицн-дины А—С иногда применяют в медицине, в основном локально, против грамположительных возбудителей болезни. [c.303]


Библиография для Митохондрия транспорт: [c.466]   
Смотреть страницы где упоминается термин Митохондрия транспорт: [c.190]    [c.11]    [c.453]    [c.455]    [c.336]    [c.247]    [c.342]    [c.87]    [c.547]   
Биохимия Том 3 (1980) -- [ c.423 ]

Биохимия мембран Биоэнергетика Мембранные преобразователи энергии (1989) -- [ c.2 , c.205 ]




ПОИСК







© 2024 chem21.info Реклама на сайте