Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Витамины — собственно

    Использование каротиноидов в качестве пищевых добавок, красителей и провитаминов А уже происходит в больших масштабах и, вполне вероятно, будет расширяться. Эго связано с увеличением спроса на природные красители, которые часто предпочитают чисто синтетическим красящим веществам, а также с тем, что постепенно налаживается промышленное производство каротиноидов. В будущем не исключено открытие новых функций каротиноидов у животных, в том числе и у человека. Каротиноиды применяются и будут применяться в дальнейшем в медицине в их собственной роли, а не только в качестве предшественника витамина А. [c.89]


    Собственной люминесценцией обладают многие витамины, порфирины, адреналин и ряд канцерогенных веществ. [c.63]

    Организм может вырабатывать свои собственные сте-рины, но он не может превращать их в витамин О, разрывая связь. Вот почему детям нужно давать витамин О и еще следить за тем, чтобы дети бывали на солнце. V Поэтому витамин О иногда называют витамином солнечного света , хотя он и не содержится в солнечном све-. те, а просто потому, что свет помогает ему образоваться из стеринов, содержащихся в коже. [c.103]

    Фотохимический способ получения продуктов тонкой химической технологии может быть представлен производством витамина Оз, широко применяемого компонента кормов для животных. Под действием УФ-излучения происходит электро-циклическое раскрытие кольца 7-дегидрохолестерина, приготовленного из холестерина. Получающийся триен, предшественник витамина Оз, превращается в собственно витамин Оз при нагревании  [c.285]

    С биологической точки зрения собственно процесс выращивания пентозных дрожжей можно разделить на две ступени. В первой активируются дрожжеподобные грибки, т. е. сахар и другие питательные вещества проникают внутрь клеток. В присутствии кислорода усиливается дыхание дрожжей. Начинается также активирование ферментов, особенно дыхательных. В результате образуются продукты обмена веществ дрожжевых клеток сахар превращается в воду и углекислоту. При этом освобождается энергия, за счет которой начинается синтез белка из азотистых веществ среды. Но видимое почкование дрожжеподобных грибков в этот период не наблюдается. Во второй ступени начинается собственно размножение дрожжеподобных грибков. Этот процесс связан с усилением энергетических процессов в клетке. Благодаря дыханию интенсивно выделяется углекислый газ. Наряду с сахаром, дрожжеподобные грибки усваивают кислоты и их соли, а также азотистые вещества, фосфор, калий, железо, марганец и другие соединения, необходимые для нормальной физиологической деятельности клетки, для построения ее протоплазмы, клеточных оболочек и т. д. Вследствие этого почкование усиливается и накапливается дрожжевая масса. Таким образом, в результате сложных ферментативных процессов из питательных веществ среды синтезируются белки, витамины, гормоны и другие ценные соединения. [c.571]

    Метод флуориметрии применяется для определения 8т, Ей, Ос1, ТЬ, Е)у, и, Т1, 8п, РЬ в водных растворах по их собственной флуоресценции. Низкотемпературную флуоресценцию галогенидных комплексов В1(1П), 8Ь(1П), А8(Ш), 8е(1У), Те(1У) используют для высокочувствительного и селективного определения этих элементов. Непереходные элементы, а также лантаноиды определяют по флуоресценции их комплексов с 8-оксихинолином, Р-дикетонами, основаниями Шиффа, азосоединениями, оксифлавонами, родаминовыми красителями и др. органическими реагентами. Разработаны методы определения порфиринов, витаминов, антибиотиков и других органических веществ по их собственной флуоресценции. [c.515]


    Многие витамины, порфирины, адреналин и целый ряд канцерогенных веществ также обладают собственной люминесценцией. [c.149]

    Собственно присутствие витамина А в пище не является столь уж существенным для предотвращения симптомов недостатка витамина А в организме. Ряд углеводородов, называемых каротинами и имеющих формулу Hje (строением они напоминают ликопин, рис. 175), могут быть превращены в витамин А непосредственно в организме. Эти вещества провитамины А) окрашены в желтый или красный цвет и содержатся в моркови, помидорах и других овощах и фруктах, а также в сливочном масле, молоке, яйцах и зелени. [c.493]

    Способностью образовывать витамин А в организме обладают только собственно каротины (см. стр. 90). В связи с этим бывает важно определить качественное и количественное содержание каротина в продуктах, содержащих и другие каротиноиды. [c.93]

    В настоящее время можно утверждать, что каждый витамин выполняет в разных организмах одну и ту же функцию. Витамины В1, Вг, Вд, РР являются коферментами или предшественниками собственно коферментов. Другие витамины, функции которых изучены менее полно, требуются для некоторых специализированных видов активности высших организмов. [c.518]

    Мул — это гибрид между ослом и лошадью, и потому он похож и на лошадь и на осла. В некотором смысле молекула спирта тоже гибрид — гибрид углеводорода и воды. Спиртам присущи свойства как предельных углеводородов, так и воды. Кроме того, как и мул, спирты имеют собственные свойства, присущие талько им одним. Наиболее резко спирты отличаются от своих родителей по физиологическому действию. Так, например, мы знаем, что вода не только не вредна, а даже жизненно необходима, а гибрид воды и метана — метиловый спирт — может вызвать слепоту или привести к смерти, если его принять внутрь. Другой спирт — этиловый — вещество, вредное для здоровья. Холестерин, который по своему химическому строению тоже относится к спиртам, служит причиной многих сосудистых заболеваний. Наряду с этим недостаточное содершание в организме такого спирта, как витамин А, ослабляет зрение. [c.197]

    Что касается коферментов (и косвенно витаминов), то они, по-видимому, или нужны для образования специфической конфигурации фермента, необходимой для проявления его активности, или же участвуют в формировании собственно активного центра. На фиг. 93 изображен как раз такой случай, когда активный центр расположен на коферменте. Однако это не всегда так. [c.348]

    О. Самуэльсон. Применение ионного обмена в аналитической химии. Издатинлит, 1955, (296 стр.). В книге изложены методы хроматографического анализа, основанные в значительной части на собственных исследованиях автора и его сотрудников. Приведен краткий исторический обзор применения неорганических и органических ионитов, описаны основные свойства ионообменных смол, рассмотрены теории ионного обмена и техника его применения в аналитической химии. Описаны примеры разделения и открытия ионов различных металлов, анионов, углеводородов, алкалоидов, ан гибио-тиков, витаминов и ряда других органических веществ. Описано применение метода для исследования растворов комплексных соединений. [c.489]

    Собственно присутствие витамина А в пище не является столь уж существенным для предотвращения симптомов недостатка витамина А в организме. Определенные углеводороды, называемые каротинами и имеющие формулу С40Н56 (по своему строению они напоминают ликопин рис. 13.1), могут превращаться в витамин А непосредственно в организме. Эти вещества, называемые провитамином А, окрашены в красный или желтый цвет они содержатся в моркови, помидорах и дру- [c.410]

    В связи с тем, что уже сказано о витаминах и коферментах, можно провести следующее их разграничение а) собственно витамины — это соединения, выполняющие свою витаминную роль самостоятельно, б) витамины-ко-ферменты — соединения, выполняющие определенную биохимическую функцию в виде производных, т.е. в виде коферментов, в) следует выделить отдельно группу коферментов, т.е. тех соединений, которые образованы из соответствующих витаминов или синтезированы самостоятельно данным организмом для осуществления того или иного химического процесса в живой клетке. В свою очередь, кофермент выполняет свою каталитическую функцию либо в свободной форме, т.е. самостоятельно, либо в ферментносвязанном виде, о чем более подробно будет сказано позже. [c.267]

    Витамин О. Группа соединений, называемых также кальциферолами и обладающих антирахитическим действием. Различают четыре соединения этой группы — Чисто природным из них является только витамер который содержится в печени рыб. Очень близок по структуре к нему витамер 0 , образующийся при УФ-облучении эр-гостерола, а последний продуцируется дрожжами и грибами. Витамин 0 (синтетический) получают УФ-облуче-нием 22,23-дигидрокси-эргостерола Собственно индивидуального витаме-ра , не существует, под этой формой витамина понимают молекулярное соединение люмистерола и витамера [c.270]

    Из реакций альдегидной формы мож- В , но в то же время наименее стабильно выделить ее конденсацию с амина- ной, живая система использует пири-ми (схема 10.2.7). доксол и пиридоксамин в качестве Поскольку пиридоксаль собственно предшественников пиридоксаля со-является активной формой витамина гласно схеме 10.2.8. [c.278]

    Витамин Вт (карнитин). По своему химическому содержанию — это у-ами-но-р-гидроксикарбоновая кислота бета-иноаой структуры, которая присутствует в тканях животных, растений, в микроорганизмах. Для некоторых насекомых карнитин является собственно витамином. Высшие животные синтезируют его из 1-лизина и далее используют в качестве кофермента, участвуюш,его в переносе остатков жирных кислот через мембраны из цитоплазмы в митохондрии. Карнитин, взаимодействия с коферментно связанной жирной кислотой, образует бифильное производное жирной кислоты, имеюш,ее высокое сродство к липидному слою клеточных мембран. Это свойство и обеспечивает ему легкость внедрения в мембрану и транспорт через нее. Жирная кислота высвобождается после транспорта реакцией гидролиза (схема 10.2.13). [c.281]


    В начале 40-х годов изучение питания молодых животных, получавших рацион с недостаточным содержанием животных белков и охраняемых от контакта с их собственными экскрементами (которые содержат витамин В12), продемонстрировало потребность в факторе животного белка , который вскоре был идентифвдирован как витамин В12. В опытах с животными было показано также, что отработанная ферментационная среда стрептомицетов, такая, какую используют для получения стрептомицина и других антибиотиков, чрезвычайно богата витамином B12. Успехам в выделении витамина В12 в значительной мере способствовало признание его роли в качестве фактора роста штамма La toba illus la tis. Концентрация витамина, прп которой скорость его роста была [c.285]

    Основная функция витамина О состоит в регуляции обмена кальция. В последнее время было обнаружено, что собственно регуляторами обмена выступают полярные гидроксилированные метаболиты витамина О. Гидроксилирование протекает по трем положениям, и самым полярным из известных в настоящее время метаболитов является 1,24,25-триоксихо-лекальциферол  [c.587]

    Эти метаболиты правильнее рассматривать как стероидные гормоны, а сам витамин О — как гормон, образующийся в коже. Изученные реакции гидроксилирования витамина О суммированы в приводимой ниже схеме. Заслуживает упоминания, что первое гидроксилирование с образованием 25-окси-холекальциферола протекает в печени, тогда как два последующих — в почках. Поскольку собственно регуляторами метаболизма ионов кальция служат ди- и триоксипроизводные витамина О, у больных с поражением почек часто наблюдается значительная деминерализация костей (почечная остеодистрофия). В последнее время проводятся исследования, направленные на получение синтетических полигидроксилиро-ванных производных витамина О для введения больным с поражением почек . [c.588]

    Древесная зелень богата биологически активными веществами. Кроме собственно витаминов ока содержит большое количество уже упоминавшегося провитамина А, ряд стеринов - провитаминов В. Также в зелени содержатся витаминоподобные вещества (бифлавоноиды - витамин Р, циклические спирты инозиты и др.), которые по своим функциям в животных организмах близки или к витаминам, или к другим незаменимым пищевым веществам (незаменимым жирным кислотам и аминокислотам). Древесная зелень содержит, главным образом в связанном виде, все незаменимые кислоты, а также незаменимые полиненасыщенные кислоты - линолевую и линолено-вую. [c.534]

    Термин липид в определенной мере условен, поскольку под липидами понимают жироподобные вещества, входящие в состав всех живых клеток. Иногда к липидам относят различные по строению органические соединения, присутствующие в живых тканях, не растворимые в воде и извлекаемые из тканей неполярными органическими растворителями (диэтиловый эфир, бензол, хлороформ). Однако при таком подходе в состав липидов наряду с жирами попадают самые разные по своей природе соединения терпены и терпеноиды, смоляные кислоты, каротиноиды, хлорофиллы, витамины и др. Поэтому часто при отнесении соединений к липидам учитывают и химическое строение. В соответствии с химическим строением вьщеляют три группы собственно липидов жирные кислоты и продукты их ферментативного окисления (простагландины и другие гидроксикислоты) глицеролипиды (содержат в молекуле остаток глицерина) липиды разного состава, не содержащие остатка глицерина и не относящиеся к липидам первой группы (некоторые фосфолипиды и гликолипиды, диольные липиды, стерины и воски). Существуют и другие системы классификации липидов. Липиды создают в растительной ткани энергетический резерв, образуют защитные покровные ткани, служат запасными питательными веществами, входят в состав клеточных мембран. [c.534]

    Учитывая содержание ряда биологически активных веществ в концентрате лизина, а также его стабилизирующие свойства, выгодно на основе жидкого концентрата лизина и сухого концентрата лизииа с наполнителем готовить витаминно-аминокислотные премиксы. Сухой премикс получают на основе ККЛ с отрубями путем добавления предусмотренного соответствующей рецептурой количества витаминов и других биологически активных неществ. При этом учитывается не только собственно лизин ККЛ, но такх<е бетаин и рибофлавин. [c.165]

    Некоторые микроорганизмы обладают способностью к биосинтезу необходимых для них ростовых веществ, причем иногда в размерах, значительно превышающих их собственную потребность. Излишек ростовых веществ (в то же время являющихся и витаминами), вырабатываемых микрофлорой кишечника некоторых животных, например жвачных (менахиноны, кобал-амкн, тиамин, рибо1флавин и др.), усваивается этими животными, вследствие чего они не нуждаются в поступлении отдельных витаминов с пищей. [c.6]

    Для микроскопического исследования собственной люминесценции биологических объектов желательно избегать их соприкосновения с фиксирующими жидкостями срезы из свежих тканей следует делать на замораживающем микротоме. Некоторые витамины (А, В ), пигменты (липофусцины, хлорофилл), а также и другие вещества под влиянием более или менее длительного освещения ультрафиолетовым излучением претерпевают фотохимические изменения и перестают люминесцировать. Поэтому микро-скоиирование таких веществ следует проводить по возможности быстро, часто меняя места наблюдения в исследуемом объекте. [c.312]

    Собственно противопеллагрическим витамином является. никотинамид 141, входящий в виде простетической группы в ферментные системы никотиновую кислоту следует рассматривать как провитамин никотинамида. Никотиновая кислота превращается в никотинамид в процессе обмена веществ в организме.  [c.293]

    При хроматографии в тонких слоях работают стандартным методом (стр. 35). К адсорбенту добавляют 2% светяш егося веш ества 78-супер , вследствие чего слои в УФ-свете в области 254 м х. флуоресцируют. Пластинки с нанесенными на них слоями должны обладать одинаковой активностью, должны иметь слой одинаковой толш ины и одинакового состава, поскольку уже небольшое различие слоев может привести к искажению и смеш ению пятен. Аналогичные аффекты могут быть вызваны также сопутствуюш ими веш ествами или слишком концентрированными растворами, вследствие перегрузки слоев. Для соблюдения стандартных условий камеры, оклеенные фильтровальной бумагой (насыш ение камеры), для каждого хроматографического анализа насыш аются свежим растворителем. Поскольку величины которые следует рассматривать как ориентировочные, могут сильно колебаться, в экстракт для сравнения необходимо добавить чистый витамин. Перед опрыскиванием хроматограммы рассматривают в коротковолновом УФ-свете (254 к[х) на поглош ение, в длинноволновом УФ-свете (365 к[х) на флуоресценцию и с помош ью лампы дневного света для установления собственной окраски. [c.213]

    Различают собственную (первичную) и наведенную (вторичную) флюоресценцию. При первичной флюоресценции исследуемый объект содержит вещества (витамины, пигменты и другие продукты обмена), способные флюоресцировать при освещении их ультрафиолетовыми лучами. Большая часть объектов микроскопии не обладает собственной флюоресценцией, поэтому при люминесцентной микроскопии их обрабатывают красителями (флюорохромами), способными флюоресцировать. В качестве флюорохромов используют аурамин (для микобактерий туберкулеза), акридиновый желтый (для гонококков), корифосфин (для коринебактерий дифтерии), флюоресцеинизотиоцианат, или ФИТЦ (для изготовления меченых антисывороток) и др. [c.10]

    Регуляция биосинтеза витамина В12 осуществляется путем репрессии различных ферментов промежуточными продуктами биосинтеза и самим витамином В12. Следует отметить, что конечный продукт биосинтеза (витамин В12) угнетает только свой собственный синтез и не влияет на образование других тетрапирролов, и предполагают, что действует на стадии метилирования УПГ 1П. В качестве самого действенного регулятора выступает лип1ь полная нуклеотидсодержащая молекула витамина В д (Л.И. Воробьева). [c.289]

    Ни растения, ни животные не могут синтезировать витамин В12. его могут образовывать лишь определенные бактерии. Бактерии желудочно-кишечно-го тракта человека способны синтезировать витамин В12 в количестве, достаточном для удовлетворения ежедневных потребностей человека. В больших количествах витамин В12 синтезируют также бактерии, обитающие в рубце жвачных животных и в слепой кишке (цекуме) других травоядных животных, например кроликов. Кролики удовлетворяют свои потребности в витамине В12 и некоторых других витаминах, время от времени поедая собственные фекалии. [c.834]

    Таким образом, и на матку Р-витаминные препараты, в отличие от АК, оказали собственное, не опосредованное адреналино-подобное действие. К сходным выводам приходит и Каминская [14]. [c.355]

    Установление существования собственного адреналцноподоб-ного действия растительных полйфенолов не отрицает наличия опосредованного (через адреналин и АК) действия этих соедине-,ний, убедительно показанного многими авторами. Б настоящее время представляется возможным по крайней мере частично раскрыть биохимический механизм этого опосредования. Весьма важны и интересны в этом отношении исследования Шамрая и сотрудников [2] по изучению взаимодействия витаминов С и Р. Что касается механизма взаимодействия полйфенолов и катехоламинов, то мы, не отрицая роли в этом процессе блокады ионов металлов, способствующих ферментативному окислению адреналина, предполагаем существование иного механизма. [c.357]

    Вскоре более точные методы химического эксперимента позволили установить, что витамин В представляет собой смесь нескольких веществ, каждое из которых обладает специфической биологической активностью. Всем им было присвоено название suтaмuнoв В с различными цифровыми или буквенными индексами. Собственно противоневротический фактор, строение которого было установлено в 1936 г., был назван витамином Вх. [c.400]


Смотреть страницы где упоминается термин Витамины — собственно: [c.268]    [c.908]    [c.19]    [c.314]    [c.592]    [c.135]    [c.60]    [c.299]    [c.45]    [c.227]    [c.789]    [c.888]    [c.220]    [c.318]    [c.368]    [c.347]   
Смотреть главы в:

Введение в химию природных соединений -> Витамины — собственно




ПОИСК





Смотрите так же термины и статьи:

Собственные



© 2025 chem21.info Реклама на сайте