Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Редкоземельные элементы рудах

    Метод позволяет определить до 10 % бериллия в металлах и сплавах (Си, Zr, Al, U), соединениях редкоземельных элементов, рудах и воздушной пыли [322]. [c.123]

    В заключение необходимо отметить широкое применение ионообменной адсорбции для извлечения и разделения ионов. Ионный обмен применяется для умягчения и очистки воды, извлечения ценных компонентов, например урана, золота, серебра. Сейчас нет производства по переработке урановых руд, в котором пе применялась бы ионообменная адсорбция. Ионный обмен используется для разделения редкоземельных элементов, что позволило получать нх в больших количествах и с высокой степенью чистоты. Раньше для этой цели применяли перекристаллизацию, производительность которой несравненно меньше. Ионообменная адсорбция является одним из важных методов в аналитической химии. [c.172]


    Нахождение в природе. В природе гафний является постоянным спутником циркония. Он настолько схож с последним, что его присутствие в рудах не было обнаружено до 1923 г. Долгое время 72 элемент не могли открыть, потому что его искали в природных рудах редкоземельных элементов, так как считали его аналогом последних. Исходя из электронной модели атома 72 элемента, Н. Бор впервые указал на его аналогию с цирконием. Вскоре его ученики, занимавшиеся исследованием циркониевых минералов, обнаружили этот элемент, названный ими гафнием. [c.301]

    Извлечение ценных металлов из разбавленных промышленных растворов. В цветной металлургии ионообменные смолы применяются в основном для извлечения из руд концентратов цветных металлов (в гидрометаллургии) и для разделения (выделения) рассеянных и редкоземельных элементов. Применение ионитов для улавливания цветных и благородных металлов из промышленных сточных вод [c.207]

    Минералы, руды и месторождения циркония. Обогащение циркониевых руд. в земной коре содержится 0,02 вес. % 2г. Он более распространен, чем N1, Си, РЬ, 2п и некоторые другие металлы. В природе, встречается главным образом в виде минералов циркона и бадделеита. Всего же известно до 20 циркониевых минералов. Он входит в количестве до нескольких процентов в состав ряда минералов, большей частью содержащих редкоземельные элементы. Ассоциация циркония с ними объясняется близостью атомных радиусов. 2г изоморфно замещает Т1, ТЬ, Ре (И). Длл него характерна большая рассеянность содержится в подавляющем большинстве горных пород, причем в некоторых из них (щелочных сиенитах) в количестве, превышающем в несколько сот раз величину кларка. [c.309]

    Рентгеноспектральный (рентгенофлуоресцентный) анализ пригоден для определения содержания всех элементов, атомный номер которых >13, т. е. начиная с алюминия. Особое преимущество метод имеет ири анализе смесей элементов, близких по свойствам, наиример редкоземельных элементов, тантала и ниобия. Рентгеноспектральный метод применяют для анализа руд, сплавов, металлов,. различных продуктов химической технологии. Диапазон определяемых концентраций очень широк можно определять макро- (от 1 до 100%) и микро- (10 —10- 7о) компоненты. [c.44]

    Наиболее часто требуется определять бериллий в присутствии Ре, А1, М , 2п, Мп, Т1, 2г, реже Мо, У (в рудах и продуктах обогащения), Си, N1, Со, Ре, А1, М (в сплавах). Все возрастающее значение бериллия в ядерной технике вызвало необходимость разработки методов отделения его от и, ТЬ и элементов с большим сечением захвата нейтронов (редкоземельные элементы, бор). Особую трудность представляет отделение следов бериллия от больших количеств других элементов. Эта проблема возникает при определении содержания бериллия в биологических пробах, в воздухе, в горных породах, а также при выделении радиоактивных изотопов. В этих случаях обычно используют соосаждение микроколичеств бериллия с коллекторами, избирательную экстракцию или ионный обмен с применением маскирующих средств. Для более эффективного разделения часто комбинируют несколько методов. [c.125]


    Метод проверен на образцах металлического никеля, медноцинковых сульфидных руд н руд с высоким содержанием редкоземельных элементов. Об определении кобальта в виде днэтил-дитиокарбамината см. также [476, 568, 1200]. [c.154]

    В настоящее время хлорная металлургия применяется для производства титаиа, ниобия, тантала, циркония, гафния, редкоземельных элементов, германия, кремния, олова и даже алюминия. Она является эффективной при переработке не только многокомпонентных руд, но и промышленных отходов, содержащих ценные элементы, металлолома, отработанных тепловыделяющих элементов ядерных реакторов и т. п. Она нашла широкое применение в металлургии редких металлов. Преимуществами хлорной металлургии по сравнению с традиционными способами извлечения металлов из руд являются полнота вскрытия сырья (полнота извлечения из него ценных элементов), а также высокая избирательность. Метод требует совершенной технологии и высокой культуры производства, поскольку хлор и его летучие соединения очень токсичны и химически агрессивны. [c.171]

    Хлорирование в настоящее время широко используют в технологии редких металлов для перевода рудных концентратов и некоторых промежуточных продуктов технологии в хлориды, удобные для последующего разделения, очистки и получения металлов. Хлорирование является основным методом, используемым в технологии титана. Хлорируется значительная доля рудных концентратов циркония и гафния, тантала и ниобия, редкоземельных элементов и др. Фторирование применяют в-значительно меньшем масштабе, главным образом для получения фторидов редких металлов из окислов или вторичных металлов с целью их металлотермического или электрохимического восстановления. Хлорирование и фторирование широко используют при переработке комплексных руд и различного рода сложных композиций окислов или металлов, так как различие в температуре плавления и температуре кипения хлоридов и фторидов редких металлов позволяет успешно разделять их и осуществлять их тонкую очистку. На основе процессов хлорирования и фторирования созданы короткие, изящные технологические схемы. Благодаря высокой реакционной способности хлора и фтора процессы хлорирования и фторирования практически осуществляются нацело, и степень перевода исходных материалов в хлориды и фториды колеблется между 98 и 100%. Их огромным преимуществом перед другими методами вскрытия и переработки рудных концентратов и других соединений редких металлов является отсутствие сточных вод и сброса в атмосферу. Создание технологических схем без водных и атмосферных сбросов является эффективной мерой по охране природы. [c.65]

    Определение всей суммы и отдельных редкоземельных элементов в естественных материалах — минералах, рудах, породах, почвах и биологических объектах — представляет собой чрезвычайно сложную задачу. Повышенный интерес к этой группе элементов вызывает необходимость анализировать не только сырье, имеюш,ее промышленное значение, но и ряд образцов, изучаемых для того, чтобы разрешить проблемы геохимии и биохимии. Такие материалы содержат, как правило, незначительные количества рзэ, что заставляет прибегать к операциям концентрирования и к применению наиболее чувствительных инструментальных способов анализа. Поскольку анализ таких объектов всегда трудоемок, перед аналитиком возникает непростая задача выбора наиболее быстрого и легкого пути, обеспечивающего заданную чувствительность и точность определения. В настоящем разделе сделана попытка соответствующим образом обобщить имеющийся методический материал и этот обобщенный опыт представить в качестве рекомендации при дальнейшем расширении круга анализируемых объектов. [c.216]

    При анализе руд и других материалов, содержащих большие количества ванадия, уран отделяют осаждением фосфата уранила или выделяют уран в виде труднорастворимого урано-ванадата кальция из уксуснокислого раствора, а затем отделяют уран от ванадия осаждением фосфата уранила (см. подробнее стр. 267). Приме-Бение комплексона III в качестве маскирующего агента при осаждении уранила в виде фосфата позволяет отделить уран не только от V, но и от Ре, А1, Сг (III), N1, Со, редкоземельных элементов, Сг (VI) и др. Выделение двойных фторидов, например МаР-ир4 или ир4, соосаждением его с СаРа из кислых растворов дает возможность отделить уран от 2г, Та, Т1, Мо и др., что может быть использовано при определении его в рудах, содержащих большие количества 2г, Та и др. [c.347]

    Флуоресцентный анализ применяют главным образом для экспрессного контроля состава продукции металлургических производств, когда необходимо определять содержание основных компонентов сплавов цветных металлов, высоколегированных сталей, шлаков, а также для анализа смеси редкоземельных элементов и анализа руд. Абсорбционный спектральный анализ наиболее пригоден для определения [c.269]


    ГИДРОМЕТАЛЛУРГИЯ — извлечение металлов из руд, концентратов или отходов различных производств в виде их соединений водными растворами различных реагентов (кислот, цианидов, аммиака и др.) и последующим выделением их из водных растворов электролизом, цементацией, экстракцией, иоио-обменом и т. п., например, извлечение золота цианированием, меди — раствором серной кислоты, алюминия — щелочью, урана, редкоземельных элементов — экстракцией органическими растворителями, ионообменным способом и др. [c.75]

    Советскими учеными проделан ряд работ по распределительно-хроматографическому выделению урана на сили-кагельных колонках. В. К. Марков [127] отмечает, что при правильном снаряжении колонки силикагелем, смоченным не водой, а подкисленным раствором высаливателя, и применении соответствующего подвижного растворителя, можно получить полное количественное отделение урана от сопутствующих элементов. При этом расход экстрагента значительно снижается по сравнению с разделением на целлюлозных колонках. Он предложил методику отделения урана от сопутствующих элементов при анализе руд на силикагеле с помощью диэтилового эфира. В работах других исследователей [128, 129] показана возможность отделения урана от плутония и ряда продуктов деления также на колонках с силикагелем. Известно также успешное применение распределительной хроматографии на силикагеле для разделения редкоземельных элементов с растворами теноилтрифторацетона (ТТА) в бензоле в качестве элюента [102]. [c.175]

    Минералы. Руды. Месторождения. Обогащение руд Л итан — один из наиболее распространенных элементов. (По данным Д. П. Виногра-дова в земной коре (без океана и атмосферы) содержится 0,6% титана по распространенности он занимает десятое место.1/Среди металлов, имеющих значение в качестве конструкционных материалов, он уступает по распространенности только алюминию, железу, магнию. Титан, как и его аналоги цирконий и гафний,— литофильный элемент, т. е. обладает большим сродством к кислороду. Содержится в осадочных породах известняке, песчанике, глинистых породах и сланцах. Еще больше его в магматических породах гранитах и особенно в базальтах. Встречается в природе в виде двуокиси, титанатов, ти-тано-ниобатов и сложных силикатов. Известно более 60 минералов, в состав которых входит титан. В его минералах часто содержатся редкоземельные элементы, цирконий и торий. [c.243]

    В качестве примера можно привести комплексную переработку хибинской апатито-нефелиновой руды. Минерал апатит включает фторапатит Саюр2(Р04)б и хлорапатит СаюС12(Р04)б. Кальций в них частично замещен на стронций, марганец и редкоземельные элементы. Минерал нефелин, является алюмосиликатом Ыа2А1281208. Наряду с этими основными минералами в апатито-нефелиновой руде содержатся другие, являющиеся алюмосиликатами железа, магния, а также оксидами железа, титана и ванадия. Руда делится на две фракции апатитовую и нефелиновую, которые перерабатываются раздельно. [c.513]

    Из монацита торий можно извлекать следующим образом ьскрытием руды серной кислотой с последующим отделением его от редкоземельных. элементов в виде окса гата и растворением последнего в азотной кислоте  [c.307]

    В монаците и других минералах и рудах торий ассоциируется со многими элементами. Особенно часто он находится вместе с редкоземельными элементами (р. з. э.) цериевой группы, с которыми имеет чрезвычайно близкие значения ионных ра- [c.8]

    Однако оказалось, что мешающее влияние многих элементов можно легко устранить применением комплексона И1, образующего с ними прочные растворимые комплексы и тем самым удерживающего их в растворе. Согласно исследованиям В. И. Титова и И. И. Волкова [157], применение комплексона III при осаждении фосфата уранила позволяет отде 1ять уран от многих элементов, в том числе таких, как Fe, AI, Сг, u, Ni, редкоземельные элементы, V, Мои др. Разработанный указанными авторами метод отделения урана под названием трилоно-фосфатного метода нашел применение при определении малых содержаний урана в бедных рудах и растворах сложного состава. [c.267]

    При обогащении моиацитовых руд после электросепарации и флотации применяют азотнокислое выщелачивание и экстракцию редкоземельных элементов (смесь органических растворителей ди-(2-этилгексил) фосфор-но1 кислоты и трибутилфосфата) [c.116]

    Сплав свинца и кадмия Оловянно-свинцовые сплавы Железо п сталь Редкоземельные элементы Металлургические остатки, содержащпе свинец, кадмий, цинк Минералы и руды Горные породы Биологические материалы Другие случаи [c.323]

    Понятия редкоземельные элементы и лантаноиды часто путают. Между тем это не одно и то же. Лантаноиды — это элементы, заряды ядер которых имеют промежуточные значения между зарядами ядер лантана и гафния. К ним относятся 14 элементов церий, празеодим, неодим, прометий, самарий, европий, гадолиний, тербий, диспрозий, гольмий, эрбий, тулий, иттербий, лютеций. В число редкоземельных элемеитов входят помимо перечисленных еще три элемента скандий, иттрий и лантан. Это объединение 17 элементов под оЗщим названием удобно потому, что скандий, нттрий н лантаи очень похожи по своим химическим свойствам на лантаноиды. Поэтому н в природе все 17 элемеитов обычно ьстречаются в д l x и тех же рудах. [c.121]

    Уран. Карбонаты уранила разлагают 5 %-ной соляной кислотой, урановые руды — соляной кислотой с добавкой окислителей (КСЮз, НМОз или Н2О2). Трудноразлагаемые минералы (торий-микролит, циркон, монацит) для определения урана разлагают азотной и фтористоводородной кислотами. Фосфаты, содержащие урановые соединения, разлагают азотной кислотой. Природные оксиды урана смолку, насту-ран и их производные, содержащие редкоземельные элементы, разлагают царской водкой, оксидные соединения урана хорошо растворяются в 20 %-ной серной кислоте, содержащей 10 7о МпОг. Монациты разлагают хлорной кислотой. Смешанные оксиды урана (четырех и шестивалентные) растворяются в фосфорной кислоте, иногда с добавкой азотной кислоты. Некоторые минералы сплавляют с пероксидом натрия. [c.21]

    По видимому, данный метод особенно пригоден для определения воды в рудах, содержащих элементы с большим сечением захвата тепловых нейтронов (бор, литий, ртуть, редкоземельные элементы). Определение воды в тонких слоях может быть проведено с помощью метода отражения нейтронов. При выполнении таких измерений Кзом и Бенедек [16] понижали энергию нейтронов, испускаемых источником, с помощью железного модератора энергия нейтронов, поступающих в счетчик, повышалась, если между счетчиком и пробой помещали слой парафина. Вада [54а] описал метод определения воды (общего количества водорода) в малых пробах с использованием америциево-бернллиевого источника нейтронов и детектора тепловых нейтронов. При времени счета 1 мин с помощью счетчика тепловых нейтронов можно определять около 0,5% воды в асбестовых плитах. [c.532]

    Дальнейшим примером использования процесса образования комплексных анионов служит разделение редкоземельных металлов, производимое в промышленных масштабах. Процесс состоит в том, что хвосты мо-нацитовых руд растворяют в азотной кислоте, осаждают редкоземельные элементы в виде оксалатов, которые затем прокаливают до трехвалентных окислов последние растворяют в соляной кислоте и сорбируют в колонне из анионообменной смолы. Для разделения элементов колонну элюируют раствором аммониевой соли этилендиаминтетрауксусной кислоты. Редкоземельные элементы элюируются из смолы в порядке возрастания прочности связи комплексных анионов со смолой, хорошо отделяясь друг от друга в первую очередь выходит самарий, за ним европий, гадолиний, тербий, диспрозий, эрбий, туллий, иттербий, иттрий, лютеций и хольмий. [c.71]


Смотреть страницы где упоминается термин Редкоземельные элементы рудах: [c.871]    [c.247]    [c.29]    [c.62]    [c.300]    [c.168]    [c.346]    [c.9]    [c.21]    [c.16]    [c.20]    [c.206]    [c.111]    [c.346]    [c.129]    [c.400]    [c.19]    [c.78]   
Анализ минералов и руд редких элементов (перевод с дополнениями с третьего английского издания) (1962) -- [ c.147 , c.149 ]




ПОИСК





Смотрите так же термины и статьи:

Фотометрическое определение индивидуальных редкоземельных элементов в рудах и минералах после хроматографического разделения на бумаге

Фотометрическое определение суммы редкоземельных элементов в рудах и породах

Элементы редкоземельные



© 2025 chem21.info Реклама на сайте