Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фишера метод определения воды

    Определение влаги производят физическими, химическими и физико-химическими методами. К физическим методам определения воды относятся удаление воды высушиванием, азеотропная дистилляция, определение содержания воды по изменению электропроводности, поглощению инфракрасных лучей. К химическим методам относятся взаимодействие воды с гидридами щелочных и щелочноземельных металлов, карбидом кальция, нитридом магния, уксусным ангидридом, реактивом Фишера. К физико-химическим методам определения воды относят химические методы, в которых конец реакции определяют при помощи ручных или автоматических электрометрических установок. Выбор метода определения влаги в органических веществах зависит от стойкости анализируемого продукта. [c.199]


    Необходимо заметить, что в системе ГОСТ Р имеется ГОСТ 24614-81 Жидкости и газы, не взаимодействующие с реактивом Фишера. Кулонометрический метод определения воды . Данный нормативный документ регламентирует проведение измерений любой жидкости, не реагирующей с реактивом Фишера, то есть не создающей аналитических помех. В принципе это может быть и нефть, нефтепродукты и энергетические изоляционные масла. Однако в существующем виде этот стандарт не может быть использован для измерений воды в нефти без дополнительной переработки и адаптации поскольку, во-первых, в нем не учитывается специфика такого объекта, как нефть с водой. Поэтому пробоотбор и пробоподготовка, имеющие решающее значение для точности измерения, ока- [c.254]

    Фишера метод определения воды [c.323]

    Дж. Митчел, Д. Смит. Акваметрия (методы определения воды в различных материалах). Издатинлит, 1952, (427 стр.). Книга представляет собой обзор литературы по применению реактива Фишера в аналитической химии. В книге дается обзор различ. ных методов определения воды, описаны методы анализа с применением реактива Фишера, причем ряд прописей и методик экспериментально проверены авторами. Излагаются методы определения содержания воды в различных органических н неорганических соединениях и промышленных материалах. В последующих разделах авторы описывают реакции, протекающие с выделением или поглощением воды, которые могут быть использованы для определения ряда функциональных групп органических соединений. [c.492]

    Часто для определения воды применяют титриметрический метод с использованием реагента Фишера. Цдя определения воды часто используют и такие методы, как газожидкостная хроматография и ИК-спектроскопия. [c.44]

    Количественный титрометрический метод определения воды по Фишеру основан на реакциях, протекающих в смешанном растворителе из пиридина и метанола  [c.413]

    Прямая И. применяется для определения Аз (III), 8п(П), 8Ь(1П), сульфидов, сульфитов, тиосульфатов, аскорбиновой к-ты и др., косвенная-для определения Си (II), О2, Н Оз, Вг2, броматов, иодатов, гипохлоритов и др. И. лежит в основе метода определения воды с помощью Фишера реактива, т. е. по р-ции 12 с 802 в смеси пиридина и метанола. [c.254]

    Одно из основных достоинств полимерных сорбентов на основе стирола и дивинилбензола состоит в быстром элюировании воды (между этаном и пропаном на порапаках Р, Q, полисорбе-1, хромосорбе 102) с хорошей формой ника, что позволяет определять примеси воды в разных системах [1,143]. Точность хроматографического метода определения воды на таких сорбентах не уступает методу Фишера и позволяет определять на хроматографе с детектором по теплопроводности 10 ррм воды [143]. При этом рекомендуют вводить пробу непосредственно в хроматографическую колонку. [c.129]


    Наиболее универсальным и точным методом определения воды является метод К. Фишера. В своей монографии Акваметрия [1306] Митчелл и Смит приводят данные, характеризующие чувствительность, точность и границы применимости этого метода. [c.266]

    В ГФ XI включены три метода определения воды в лекарствен ных средствах. Два из них можно отнести к физическим мето дам — это метод высушивания и метод дистилляции, а один — I химическим — это метод акваметрии, который больше известе как метод Фишера. [c.96]

    Разработан ряд химических методов определения воды. Несомненно, важнейший из них основан на применении реагента Карла Фишера — относительно специфичного реагента на воду.  [c.219]

    Наиболее распространенным методом определения воды, содержащейся в органических растворителях, твердых веществах и даже газах, является титриметрический метод с использованием реагента Карла Фишера. Измерение производят обычным электрометрическим методом, применяемым во многих исследованиях. Принимая во внимание очень большую экзотермическую теплоту реакции воды с реагентом Карла Фишера (—16,1 ккал/моль воды), до некоторой степени удивительно, что первое сообщение об использовании теплоты этой реакции к определению содержания влаги было сделано только в 1966 г. [c.107]

    Проследив тенденции в развитии методов определения воды, мы пришли к выводу, что предложенный нами термин акваметрия используется сейчас для обозначения аналитического определения воды в целом, а не только применительно к титрованию реактивом Карла Фишера. [c.6]

    В первом томе собраны химические, гравиметрические, спектральные и другие физические методы определения воды, а также методы, основанные на различных приемах фракционирования смесей. Вводная первая глава Структура и физические свойства воды содержит данные о различных состояниях воды, природе межмолекулярных взаимодействий, а также о некоторых физических свойствах воды, которые можно использовать для аналитических целей. Более подробно с этими вопросами читатели могут ознакомиться в цитированной литературе. В первом томе имеется много ссылок на работы, в которых применяется титрование реактивом Карла Фишера. Это самый распространенный метод определения воды, и поскольку используемая в нем реакция является стехиометрической, этот метод служит калибровочным для многих других методов. Калибровка имеет очень большое значение при использовании спектральных и некоторых других методов, пра- [c.6]

    В 1935 г. немецкий химик Карл <1)ишер предложи определять воду в анализируемых веществах путем тит]эования их растворов метанольным раствором иода, диоксида серы и пиридина. Этот реактив получил название реактив Фишера , а сам метод определения воды титрованием реактивом Фишера называют акваметрией. Метод щироко применяется в наши дни, особенно — в фармацевтическом анализе. [c.40]

    Но наиболее точным и универсальным методом определения воды является метод, основанный на применении реактива К. Фишера. [c.129]

    Как основу для разработки нового метода определения воды ее подробно изучили Бельчер и Уэст [83], попутно обследовав еще около 50 реакций с участием воды. В качестве растворителя брома и ангидрида принят хлороформ органическое основание (пиридин) для нейтрализации кислот вносится непосредственно в титруемый раствор. Благодаря этому водный эквивалент реактива сохраняется почти неизменным длительное время, а также полнее, чем иод в реактиве Фишера, используется бром на реакцию с водой. Интересно, что стехиометрия реакции воды с бромом, по-видимому, такая же, что и в реактиве Фишера. [c.43]

    В 1935 г. Фишер предложил простой и очень точный метод определения воды, который в настоящее время широко применяется. [c.72]

    Большое число объемно-аналитических методов определения воды и спиртов основано на их реакциях с различными веществами, обычно органическими. В результате реакции образуются кислоты, которые можно затем титровать. Эти методы в отношении определения воды в настоящее время уже не имеют того значения, какое они имели до появления иодометрического метода К. Фишера тем не менее некоторые из них еще находят применение. [c.263]

    ГОСТ 24614—8il. Жидкости и газы, не взаимодействующие с реактивом Фишера. Кулонометрический метод определения воды. [c.23]

    В настоящее вр емя универсальным методом определения воды, принятым и узаконенным стандартами ряда стран, в том числе ГОСТ 11736—78, является метод иодометрического титрования— метод Фишера. Основным его преимуществом является высокая селективность реакции, положенной в основу метода. Традиционный реактив Фишера состоит из иода, диоксида серы, пиридина и метилового спирта. В этой системе взаимодействие реактива Фишера с водой представляет собой двухстадийную реакцию  [c.270]

    Наиболее распространенными методами определения влажности являются методы высушивания продукта в сушильном шкафу до постоянной массы [3]. Высушивание пробы может быть ускорено нагреванием пробы под инфракрасными лучами или применением тока высокой частоты. Из объемных методов определения воды в исследуемых веш ествах получил широкое распространение метод с реактивом Фишера. [c.15]


    Р. Фишера — раствор оксида серы (IV), иода и пиридина в метиловом спирте. С помощью реактива Фишера определяют количественное содержание воды в различных растворителях и летучих веществах. Этим же реактивом может быть определена гифоскопическая и кристаллизационная вода. См. Фишера метод определения воды  [c.254]

    Наболее универсальным методом определения воды признано определение, основанное на применении реактива Фишера — раствора иода, двуокиси серы и пиридина в метиловом спирте. Взаи- [c.314]

    Весьма многие проблемы современной аналитической химии могут быть сведены к количественному определению содержания воды в анализируемых объектах. Были разработаны различные методы определения воды, имеющие более или менее широкие области применения. Однако, как показали исследования, проведенные в течение последних двух десятилетий, ни один из этих методов не может выдержать сравнения по точности, удобству н универсальности с методом, основанным на применении реактива, который представляет собой раствор иода, пиридина и сернистого ангидрида в метаноле. Этот реактив, известный под названием реактива Фишера, позволяет удобно и точно определять содержание воды в различных объектах, в результате чего область его применения за короткое время чрезвычайно расширилась и продолжает непрерывно расширяться. [c.3]

    Хотя авторы и не имели в виду дать исчерпывающий обзор всех методов определения воды, однако большинство из них было рассмотрено с целью выяснения преимуществ методов, основанных на применении реактива Фишера. В тех случаях, когда это казалось целесообразным, были подробно описаны некоторые методы, отличные от метода Фишера. В частности, это относится к химическим методам определения свободной воды, которые описаны главным образом в гл. I. [c.5]

    Фишера метод определения воды — химический метод, позволяющий определить суммаркГое содержание как свободной, так и кристаллизационной воды в неорганических и органических веществах, а также в различных растворителях. Реактив Фишера представляет собой раствор оксида серы (IV), иода и пиридина в метаноле. Суть химических процессов может быть представлена следующими схемами  [c.323]

    Известно большое число методов определения воды. Так, воду определяют гравиметрически косвенным или прямым методом (см. гл. 9). В косвенном методе о содержании воды судят по потере массы анализируемой пробы при ее высушивании или прокаливании. Этот метод часто не дает правильных результатов, что связано с трудностью определения температуры, необходимой для полного выделения воды, и потерей с водой летучих компонентов образца. Прямой гравиметрический метод основан на поглощении выделившейся из образца воды подходящим поглотителем, чаще всего безводным перхлоратом магния. О содержании воды судят по увеличению массы предварительно взвешенного поглотителя. Часто для определения воды 1фименяют титриметрический метод с использованием реагенга Фишера. [c.69]

    Одним из важнейших приложений кулонометрической иодометрии являются методы определения воды реак-тивол Фишера, электрогеперируемым компонентом которого служит иод [469—474]. Автор совместно с Е. П. Пантелеевой применил этот прием для определения малых количеств воды в самых разнообразных соединениях (тетрагидрофуран, фуран, окись пропилена, фреоны, некоторые эфиры, соли и т. п.). В химико-аналитических лабораториях различных производств приходится точно и быстро определять малые количества воды. В связи с этим ниже приводится полное описание методики определения влаги электрогенерированным реактивом Фишера [474а]. Определение выполняют на установке, аналогичной показанной на рпс. 10. Разница состоит в том, что переменные сопротивления заменены сопротивлениями большой мош,ности, позволяющими работать при генераторном токе до 100 ма. При необходимости в качестве таких сопротивлений можно использовать обычные ползун-ковые реостаты соответствующей мощности. Применяемая в этом случае титрационная ячейка показана на рис. 17. [c.55]

    Для некоторых газов между А Г и содержанием влаги (в пре делах от О до 0,1%) соблюдается линейное соотношение. Од нако наклоны линий будут несколько различаться для газов с раз личной теплоемкостью. Для калибровки прибора были использо ваны газовые смеси, содержащие 7% водорода 1,0% кислорода 0,7% этилена 0,6% диоксида углерода и 0,5% (об.) бутана Показано, что этим методом может быть определено даже 0,0005% (об.) БОДЫ (5 млн" ). Энгельбрехт и Дрекслер [28] применили этот метод для прямого определения свободной воды в нитрате аммония, который распыляли в токе сухого азота при комнатной температуре. Количество влаги, удаляемой азотом, определяли путем поглощения пентоксидом фосфора и сравнивали с общим содержанием воды, найденным методом Фишера оказалось, что при распылении нитрата аммония влага удаляется не полностью. Тем не менее, между содержанием влаги, найденным методом Фишера, и разностью сопротивлений термисторов выполняется линейное соотношение. Описанным методом можно достаточно надежно определить менее 0,1% воды. Энгельбрехт и Дрекслер [28] сделали заключение, что описанная техника измерений применима для определения содержания свободной воды во многих мелкораздробленных твердых материалах. Десорбция влаги потоком сухого газа может быть использована в сочетании с другими методами определения воды—абсорбционными, электрическими и физическими. [c.208]

    Определение концентрации воды в топливах осуществляется различными способами при помощи реактива Фишера или гидрида кальция, по Дину-Старку и т.д. Большая часть их для анализа ВТЭ неудобна, хотя в принципе применима. Госко-миссия по испытаниям топлив, масел, смазок и спецжидкостей утвердила хроматографический метод определения воды в ВТЭ (решение № 1/23-295), основанный на адсорбции воды на ин дикаторном силикагеле, обработанном хлоридом кобальта. Метод заключается в пропускании образца через колонку, заполненную высушенным (120 °С, 4-5 ч) силикагелем фракции 0,05-0,15 мм. Длина обесцвеченной зоны соответствует концентрации воды в ВТЭ. Метод позволяет анализировать эмульсии, содержащие 2,5-20,0 % (об.) воды [143], [c.203]

    Интересный пример больших возможностей реактива Фишера дают методы определения воды в белой [162] и красной [163] дымящей азотной кислоте, содержащей избыточные количества двуокиси азота. Решение этой задачи классическим методом заключается в том, что вначале определяют содержание отдельных компонентов по известным методикам (HNO3 — титрованием щелочью, а NO2 — це-риметрически) и количество воды находят по разности. Согласно авторам [162] влажность белой дымящей азотной кислоты можно определить по Фишеру следующим образом. Образец кислоты осторожно нейтрализуют избытком смеси (примерно 10 см ) пиридин — диметилформамид и далее прибавляют известное количество реактива Фишера, превышающее содержание воды. Избыток реактива обратно титруют стандартным раствором воды в метаноле с биамперометрической индикацией конечной точки. Как видно из данных, приведенных в табл. 1.8, двуокись азота вплоть до концентрации 1,5% не мешает титрованию воды по описанному способу. Выше этой концентрации, когда белая дымящая азотная кислота становится красной, этот способ, вероятно, уже неприменим, поэтому для определения воды в такой кислоте разработан другой, более сложный вариант [163]. [c.71]

    Метод определения воды в сырой нефти с помощью потенциометрического титрования по методу Карла Фишера устанавливает международный стандарт ИСО 10336. Метод применим для сырой нефти с содержанием воды от 0,05 масс.% до 2,00 масс.% и с содержанием менее 0,005 масс.% меркаптановой или сульфидной серы, или и той, и другой. [c.186]

    Существующие количественные методы определения воды в жидких продуктах, кроме того, делят на прямые и косвенные. К прямым методам относят метод Дина и Старка, титрование реактивом Фишера, гидридкальциевый метод и центрифугирование, к косвенным — диэлькометрический, ИК-спектрофото-метрический, кондуктометрический, колориметрический и др. [c.25]

    Модифицированный метод титрования реактивом Фишера для определения воды в присутствии силанолов основан на применении вместо метилового спирта высших спиртов — от СвН ОН до С1ЯН37ОН [1441]. [c.337]

    Одним из важнейших приложений кулонометрйческой иодометрии являются методы определения воды реактивом Фишера, электрогенерируемым компонентом которого служит иод. [c.74]

    Использование реактива Фишера и пределы применимости его для определения воды. В настоящее время применение реактива Фишера лежит в основе наиболее популярного химического метода определения воды. Его широко применяют для определения воды в качестве примеси к органическим веществам, а также для функциональных анализов, основанных на реакциях, протекающих с поглощением или выделением воды. Делались попытки приспособить эти определения к микромасштабуМикрометодика приведена в примере 48 в гл. 13. [c.433]

    Для определения примесей воды в газовых средах используется электролитический гигрометр [150], в котором вода поглощается пятиокисью фосфора Р2О5, а для определения воды в жидких реактивах— классический титриметрический метод с реактивом Фишера [151]. Определению воды этим методом мешают примеси веществ, которые могут вступать в окислительно-восстановительные реакции с реактивом Фишера [151, 152]. [c.173]

    Гл. I посвящена обзору различных методов определения воды. В гл. II дано краткое описание методов анализа с применением реактива Фишера по мысли авторов наличие этой главы делает книгу удобной для пользования в лабораторной обстановке. В гл. III даны сведения о природе и об особенностях реактива Фишера. Гл. IV посвящена различным способам титрования этим реактивом. Наконец, в гл. V—VIII излагаются методы определения содержания воды в разнообразных органических и неорганических соединениях и промышленных материалах. [c.4]


Смотреть страницы где упоминается термин Фишера метод определения воды: [c.66]    [c.831]   
Основы аналитической химии Часть 2 (1965) -- [ c.157 ]

Основы аналитической химии Книга 2 (1961) -- [ c.202 ]

Химический анализ (1979) -- [ c.396 , c.398 ]

Основы аналитической химии Издание 3 (1971) -- [ c.204 ]

Основы аналитической химии Кн 2 (1965) -- [ c.157 ]




ПОИСК





Смотрите так же термины и статьи:

Вода определение химическими методами с применением реактива Фишер

И ЭФФЕКТИВНОСТИ ДЕЭМУЛЬГАТОРОВ Определение воды в нефти методом Фишера

Метод электрометрического титрования Карла Фишера для определения содержания воды

Объемно-аналитическое определение воды при помощи реактива Фишера. Обзор аналитических методов, основанных на поглощении или выделении воды

Объемный метод определения общей и гигроскопической воды реактивом Фишера или йод-ацетатным раствором

Определение воды методом Карла Фишера

Применение реактива Фишера для количественного определения воды Реакции неорганических соединений Методы определения воды

Фишер

Фишера метод

Фишера определение воды

Химические методы определения воды реагент Карла Фишера



© 2024 chem21.info Реклама на сайте